Energieausweis für Wohngebäude Nr. 49865-2

Objekt

WA Rüttenen, Feldkirch - Haus 2

Gebäude (-teil)

WA Rüttenen, Feldkirch - Haus 2

Nutzungsprofil

Mehrfamilienhäuser

Straße

Rüttenenstrasse

PLZ, Ort

6800

Feldkirch

Grundstücksnr.

1642/2, 1642/5

Baujahr

2016 100

Letzte Veränderung

Katastralgemeinde

Feldkirch

KG-Nummer

92105

Seehöhe

458 m

SPEZIFISCHE KENNWERTE AM GEBÄUDESTANDORT

HWB

PEB kWh/m²a CO2

A++

A+

В

D

G

kWh/m²a

kg/m²a

A+ 0.62

HWB: Der Heizwärmebedarf beschreibt jene Wärmemenge, die in einem Raum bereitgestellt werden muss, um diesen auf einer normativ geforderten Raumtemperatur (bei Wohngebäude 20°C) halten zu können.

NEB (Nutzenergiebedarf): Energiebedarf für Raumwärme (siehe HWB) und Energiebedarf für das genutzte Warmwasser.

EEB: Gesamter Nutzenergiebedarf (NEB) inklusive der Verluste des haustechnischen Systems und aller benötigten Hilfsenergien, sowie des Strombedarfs für Geräte und Beleuchtung. Der Endenergiebedarf entspricht - unter Zugrundelegung eines normierten Benutzerverhaltens - jener Energiemenge, die eingekauft werden muss.

PEB: Der Primärenergiebedarf für den Betrieb berücksichtigt in Ergänzung zum Endenergiebedarf (EEB) den Energiebedarf aus vorgelagerten Prozessen (Gewinnung, Umwandlung, Verteilung und Speicherung) für die eingesetzten Energieträger.

CO2: Gesamte dem Endenergiebedarf (EEB) zuzurechnende Kohlendioxidemissionen für den Betrieb des Gebäudes einschließlich der Emissionen aus vorgelagerten Prozessen (Gewinnung, Umwandlung, Verteilung und Speicherung) der eingesetzten Energieträger.

fGEE: Der Gesamtenergieeffizienz-Faktor ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf (Anforderung 2007).

Alle Werte gelten unter der Annahme eines normierten BenutzerInnenverhaltens. Sie geben den rechnerischen Jahresbedarf je Quadratmeter beheizter Brutto-Grundfläche am Gebäudestandort an.

Energieausweis für Wohngebäude Nr. 49865-2

GEBÄUDEKENNDATEN

Brutto-Grundfläche	448,3 m²	Klimaregion	West ¹	mittlerer U-Wert	0,28 W/m ² K
Brutto-Volumen	1.368,4 m ³	Heiztage	201 d	Bauweise	mittelschwer
Gebäude-Hüllfläche	761,79 m ²	Heizgradtage 12/20	3.517 Kd	Art der Lüftung	Fensterlüftung
Kompaktheit A/V	0,56 m ⁻¹	Norm-Außentemperatur	-12,7 °C	Sommertauglichkeit	erfüllt ²
charakteristische Länge	1,80 m	Soll-Innentemperatur	20 °C	LEK _T Wert	21,85

ENERGIEBEDARF AM STANDORT	NEB kVah / m/a	EEB kWh/m²a	PEB kWh/m/a	CO ₂ kg/m²a	
102				6,85	18
85			43,03		15
68		16,43	19,91	3,83	12
51	12,78	14,95			9
34				9,69	6
17	37,65	40,47	48,49		3
0	kWh/a	xWh/a	kWh/a	kģ / a	0
Haushaltsstrombedarf ³ 100% Netzbezug	NVIII S	7.363	19.290	3.070	
Warmwasser ³ ca, 65% therm, Solar, 35% Erdgas	5.726	6.700	8.926	1.717	
Raumwärme ³ 100% Erdgas	16,877	18.141	21.736	4.345	
Gesamt	22.604	32.204	49.952	9.132	

ERSTELLT

49865-2 EAW-Nr. keine Angabe GWR-Zahl 29. 09. 2016 Ausstellungsdatum 29. 09. 2026 Gültig bis

ErstellerIn

Stempel und

Unterschrift

Wärme-, und Schallschutztechnik - Schwarz Thomas

Alte Landstrasse 39

6820 Frastanz

ches Büro - Ingeniguridüro (ül Bauphyelk

¹ maritim beeinflusster Westen ² Details siehe Anforderungsblatt
³ Die spezifischen & absoluten Ergebnisse in kWh/m²,a bzw. kWh/a auf Ebene von EEB, PEB und CO₂ beinhalten jeweils die Hilfsenergie. Etwaige vor Ort erzeugten Erträge aus einer thermischen Solaranlage und/oder einer Photovollaikanlage (PV) sind benücksichigt. Für den Warmwasserwärme- & den Haushaltsstrombedarf werden standardisierte Normbedarfswerte herangezogen. Die ausgewiesenen prozentzulellen Anteliel der einzelnen Energiesysteme stellen ledgilch eine ungefähre Größenordnung dar und können in der Praxis davon abweichen. Insbesondere bei thermischen Solaranlagen ist der Ertrag rechnerisch nicht genau auf Raumwärme und Warmwasser aufteilbar.

Energieausweis für Wohngebäude Nr. 49865-2

ERGÄNZENDE INFORMATIONEN / VERZEICHNIS

Zustandseinschätzung am 29. 9. 2016

Ist-Zustand

PlanungPapierkorb

Umsetzung unwahrscheinlich

Bestpractice - Planung
Bestpractice - Umsetzung

unwahrscheinlich

Diese Zustandsbeschreibung basiert auf der Einschätzung des EAW-Erstellers zu dem gegebenen Zeitpunkt und kann sich jederzeit ändem.

Beschreibung • Baukörper

Alleinstehender Baukörper
Zubau an bestehenden Baukörper
zonierter Bereich im Gesamtgebäude

Kennzahlen für die Ausweisung in Inseraten

• HWB: 37,7 kWh/m²a (B)

• f_{GEE}: 0,62 (A+)

Diese Energiekennzahlen sind laut Energieausweisvorlage Gesetz 2012 bei Verkauf und Vermietung verpflichtend in Inseraten anzugeben. Die Kennzahlen beziehen sich auf das Standortklima.

ENERGIEAUSWEIS-ERSTELLER

Sachbearbeiter, Zeichnungsberechtigte(r)

Thomas Schwarz

Wärme-, und Schallschutztechnik - Schwarz

Thomas

Alte Landstrasse 39 6820 Frastanz

Telefon: +43 (0)5522 / 52953 E-Mail: office.wss@aon.at Berechnungsprogramm GEQ, Version 2016.052503

OBJEKTE

WA Rüttenen, Feldkirch - Haus 2

Nutzeinheiten:

6 Obergeschosse:

3 Untergeschosse:

Beschreibung: WA Rüttenen, Feldkirch - Haus 2

VERZEICHNIS

1.1 - 1.3	Seiten 1 und 2 Ergänzende Informationen / Verzeichnis
2.1 - 2.2	Anforderungen Baurecht
3.1 - 3.3	Bauteilaufbauten
4.1	Gutachten gem. BEV 54/2014 §1 Abs.3 lit.f
5.1	Datenblatt Wohnbauförderung Neubau
6.1	Ergebnisseite gem. OIB RL 6 (bei WG, nWG)

Anhänge zum EAW:

A.1 - A.24 A. WA Rüttenen, Feldkirch - Haus 2

Alle Teile des Energieausweises sind über die Landesplattform zum Energieausweis einsehbar: https://www.eawz.at/?eaw=49865-2&c=b90dd1c4

Energieausweis für Wohngebäude Nr. 49865-2

2. ANFORDERUNGEN BAURECHT

ZUSAMMENFASSUNG

Anlass für die Neubau Erstellung

Sämtliche Anforderungen zum Thema Energieeinsparung & Wärmeschutz

einzelne Anforderungen benötigen Aufmerksamkeit

Rechtsgrundlage BTV LGBI.Nr. 29/2015 (ab 19.06.2015)

Sämtliche Anforderungen der OIB-RL 6 bzw. der baurechtlichen Anforderungen in Vorarlberg zum Thema "Energieeinsparung und Wärmeschutz" sind zu erfüllen. Jene Angaben, welche mit einem gelben Dreieck markiert sind, benötigen besonderes Augenmerk und Beurteilung im Rahmen des Bauverfahrens.

ANFORDERUNGEN ZU THEMA "WÄRMEEINSPARUNG UND WÄRMESCHUTZ" IN VORARLBERG

Soll	Ist	Anforderungen	
PEB_{SK} 180,0 kWh/(m²a)	111,4 kWh/(m²a)	erfüllt	Die Anforderung an den Primärenergiebedarf (Standortklima) bei Neubau von Wohngebäuden (BTV 29/2015, §41 Abs.3, Abs.8) wurde rechnerisch nachgewiesen.
CO _{2 SK} 28,0 kg/(m²a)	20,4 kg/(m²a)	erfüllt	Die Anforderung an die Kohlendioxidemissionen (Standortklima) bei Neubau von Wohngebäuden (BTV 29/2015, §41 Abs.3, Abs.8) wurde rechnerisch nachgewiesen.
HWB _{RK} 40,1 kWh/m²a	36,3 kWh/m²a	erfüllt	Die Anforderung an den Heizwärmebedarf (Referenzklima) bei Neubau von Wohngebäuden (BTV 29/2015, §41 Abs.3) wurde rechnerisch nachgewiesen.
EEB _{SK} 100,0 kWh/m²a	71,8 kWh/m²a	erfüllt	Die Anforderung an den Endenergiebedarf (Standortklima) bei Neubau von Wohngebäuden (OIB Richtlinie 6, Ausgabe Oktober 2011, Punkt 4) wurde rechnerisch nachgewiesen.

ANFORDERUNGEN AN WÄRMEÜBERTRAGENDE BAUTEILE

Bauteilaufbauten	vallatändia arfiillt	Die
	vollständig erfüllt	Pkt

e Anforderungen an wärmeübertragende Bauteile (OIB-RL6 Ausgabe 10/2011 Pkt.10 und BTV 29/2015, §41 Abs. 10) ist im Zuge der Ausführung vom Bauherrn oder einem befähigten Vertreter zu beachten bzw. zu erfüllen. Detaillierte Informationen zu den Bauteilen finden Sie im Abschnitt "Bauteilaufbauten".

ANFORDERUNGEN AN DAS GEBÄUDETECHNISCHE SYSTEM

Anforderung Wärmeverteilung	erfüllt / ist zu erfüllen	Die Anforderung der OlB-RL 6 (Ausgabe Oktober 2011) Punkt 11.1 "Wärmeverteilung" ist im Zuge der Ausführung vom Bauherrn oder einem befähigten Vertreter zu beachten bzw. zu erfüllen. Sie gilt bei Neubau, wesentlicher Änderung der Verwendung jeweils für die gesamte betroffene
Anforderung Lüftungsanlagen	erfüllt (keine Lüftungsanlage vorgesehen / vorhanden)	Anlage. In dem betrachteten Gebäude /-teil ist keine Lüftungsanlage vorgesehen / vorhanden. Damit ist die Anforderung der OIB-RL 6, Ausgabe Oktober 2011, Punkt 11.2 "Lüftungsanlagen" erfüllt.

In dem betrachteten Gebäude/-teil ist keine raumlufttechnische "Zu- und Anforderung erfüllt (keine Abluftanlage" vorgesehen / vorhanden. Damit ist die Anforderung der OIB-RL 6, Wärmerückgewinnung raumlufttechn. Anlage Ausgabe Oktober 2011, Punkt 11.3 "Wärmerückgewinnung" erfüllt.

Anforderung zentrale

Wärmebereitstellung

	vorgesehen / vorhanden)	
SONSTIGE ANFORDERUNGEN		
Anforderung Vermeidung von Wärmebrücken	erfüllt / ist zu erfüllen	Die Anforderung der OIB-Richtlinie 6 (Ausgabe Oktober 2011) Punkt 12.1 "Vermeidung von Wärmebrücken" ist im Zuge der Ausführung vom Bauherrn zu beachten bzw. zu erfüllen.
Anforderung Luft- & Winddichtheit	erfüllt / ist zu erfüllen	Die Anforderung der OlB-RL 6 (Ausgabe Oktober 2011) Punkt 12.2"Luft- und Winddichte" ist im Zuge der Ausführung vom Bauherrn oder einem befähigten Vertreter zu beachten bzw. zu erfüllen.
Sommerlicher Überwärmungsschutz	erfüllt (Nachweis geführt)	Der EAW-Ersteller bestätigt auf Basis der Berechnung nach ÖNORM B 8110-3 die Einhaltung des "Sommerlichen Überwärmungsschutz" (OIB-RL 6, Ausgabe Oktober 2011, Punkt 12.3). Die Berechnung liegt im Anhang bei.
Hocheffiziente alternative Energiesysteme & erneuerbare Energie	Gas-oder Öl-Brennwert- Anlage (mit therm. Sol. oder PV)	Die Anforderung BTV §41b Abs.2 lit.e ist erfüllt und es kann auf Basis eines entsprechenden Gutachtens nach BEV 54/2014 §1 Abs.3 lit.f von der Baubehörde eine Ausnahme erteilt werden.

Die Anforderung der OlB-RL 6 Punkt 12.5 "Zentrale Wärmebereitstellungsanlage" ist erfüllt, da eine zentrale Wärmebereitstellungsanlage vorhanden ist.

Alle Dokumente und rechtlichen Grundlagen, auf die in diesem Energieausweis verwiesen wird, finden Sie hier: http://www.eawz.at/RG_ab2013

erfüllt (vorhanden)

Energieausweis für Wohngebäude Nr. 49865-2

2. ANFORDERUNGEN BAURECHT

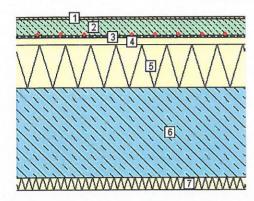
Anforderung elektr. Direkt-Widerstandsheizung

erfüllt / ist zu erfüllen

Die Anforderung der OIB-Richtlinie 6 (Ausgabe Oktober 2011) Punkt 12.6 "Elektrische Widerstandsheizungen" ist im Zuge der Ausführung vom Bauherrn zu beachten bzw. zu erfüllen.

Alle Dokumente und rechtlichen Grundlagen, auf die in diesem Energieausweis verwiesen wird, finden Sie hier: http://www.eawz.at/RG_ab2013

Energieausweis für Wohngebäude Nr. 49865-2

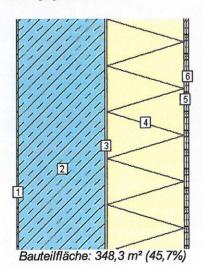


Zustand:

Zustand:

3. BAUTEILAUFBAUTEN - OPAKE BAUTEILE, SEITE 1/2

FUSSBODEN ZUR TIEFGARAGE DECKEN gegen Garagen


			neu
Schicht von konditioniert (beheizt) – unkonditioniert (unbeheizt)	d cm	λ W/mK	R m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,17
1. Bodenbelag	1,00	0,150	0,07
2. Zementestrich	7,00	1,600	0,04
3. Dampfsperre (zB: Vap 2000 o. glw.)	0,02	0,350	0,00
4. Trittschalldämmung	3,00	0,042	0,71
5. Polystyrol EPS-W-25	18,00	0,038	4,74
6. Stahlbeton	38,00	2,500	0,15
7. Tektalan-SD	5,00	0,053	0,94
R _{se} (Wärmeübergangswiderstand außen)			0,17
R' / R" (relativer Fehler e max. 0%)		7	,00/7,00
Gesamt	72,02		7,00

Bauteilfläche: 149,4 m² (19,6%)

	U Bauteil	R ab Flächenhzg.
Wert:	0,14 W/m²K	6,55 m²K/W
Anforderung:	max. 0,30 W/m²K	min. 3,50 m ² K/W
Erfüllung:	erfüllt	erfüllt

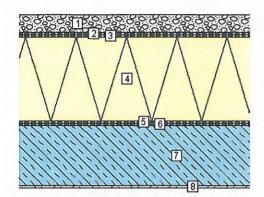
Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. OIB-RL6 BTV 29/2015 §41, max. 0,30 W/m²K). Die Anforderung an den Wärmedurchlasswiderstand (lt. OIB-RL6 (Okt. 2011), 10.3.1, min. 3,5 m²K/W) der Bauteilschicht(en) zwischen Flächenheizung und dem unbeheizten Gebäudeteil wird erfüllt.

AUSSENWAND ALLGEMEIN WÄNDE gegen Außenluft

			neu
Schicht von konditioniert (beheizt) – unkonditioniert (unbeheizt)	d cm	λ W/mK	R m²K/W
R _{si} (Wärmeübergangswiderstand innen)		**********	0,13
1. Spachtelputz	0,50	0,830	0,01
2. Stahlbeton	20,00	2,500	0,08
3. Kleber mineralisch	0,50	1,000	0,01
4. RÖFIX EPS-F 031 EPS-Fassadendämmplatte "Lambdapor"	18,00	0,031	5,81
5. Grundputz	0,50	0,470	0,01
6. Deckputz (Silikonharzputz)	0,30	0,700	0,00
R _{se} (Wärmeübergangswiderstand außen)			0,04
R' / R" (relativer Fehler e max. 0%)		6,	08/6,08
Gesamt	39,80		6,08

Wert: 0,16 W/m²K
Anforderung: max. 0,30 W/m²K
Erfüllung: erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV 29/2015 §41, max. 0,30 W/m²K).


Energieausweis für Wohngebäude Nr. 49865-2

3. BAUTEILAUFBAUTEN - OPAKE BAUTEILE, SEITE 2/2

FLACHDACH ALLGEMEIN Zustand: neu

DECKEN und DACHSCHRÄGEN jeweils gegen Außenluft und gegen Dachräume (durchlüftet oder ungedämmt)

Schicht von unkonditioniert (unbeheizt) – konditioniert (beheizt)	d cm	λ W/mK	R m²K/W
R _{se} (Wärmeübergangswiderstand außen)		and the state of the state of the	0,04
1. Rundkies 16/32	6,00	*1	*1
2. Trennvlies	0,04	0,500	0,00
3. Dachhaut (zB: Sarnafil TG 66 o. glw.)	0,18	0,170	0,01
4. Polystyrol EPS-W-25 (im Mittel)	28,00	0,038	7,37
5. Dampfsperre (zB: Vap 2000 o. glw.)	0,02	0,350	0,00
6. Trennvlies	0,04	0,500	0,00
7. Stahlbeton	20,00	2,500	0,08
8. Spachtelputz	0,50	0,830	0,01
R _{si} (Wärmeübergangswiderstand innen)	1 20 200 200	Who were the second second	0,10
R' / R" (relativer Fehler e max. 0%)		7	61/7,61
Gesamt	The Charles and the Charles an		7,61
Bauteildicke gesamt / wärmetechnisch relevant	54,78 / 48	,78	

Bauteilfläche: 149,4 m² (19,6%)

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV 29/2015 §41, max. 0,20 W/m²K).

	U Bauteil
Wert:	0,13 W/m²K
Anforderung:	max. 0,20 W/m²K
Erfüllung:	erfüllt

WARME ZWISCHENDECKE DECKEN gegen getrennte Wohn- und Betriebseinheiten

Zustand	
nou	

angang bangang pangang pangan
igonorgia a la
ALLE TO THE TOTAL TOTAL TOTAL TO THE TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TO THE TOTAL
filifififififififififi

Schicht	d cm	λ W/mK	R m²K/W
R _{si} (Wärmeübergangswiderstand innen)	The same of the sa	A TOTAL DISTRICT THE TOTAL CO.	0,13
1. Bodenbelag	1,00	0,150	0,07
2. Zementestrich	7,00	1,600	0,04
3. Dampfbremse (zB: Vap 1000 o. glw.)	0,02	0,350	0,00
4. Trittschalldämmung	3,00	0,042	0,71
5. Polystyrol EPS-W-25	4,00	0,038	1,05
6. Stahlbeton	22,00	2,500	0,09
7. Spachtelputz	0,50	0,830	0,01
R _{se} (Wärmeübergangswiderstand außen)			0,13
R' / R" (relativer Fehler e max. 0%)		2,	23/2,23
Gesamt	37,52		2,23

Bauteilfläche: 0,0 m² (0,0%)

	U Bauteil	Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV 29/2015 §41, max. 0,90 W/m²K).
Wert:	0,45 W/m²K	
Anforderung:	max. 0,90 W/m²K	
Erfüllung:	erfüllt	

Energieausweis für Wohngebäude Nr. 49865-2 OIB

3. BAUTEILAUFBAUTEN - TÜREN, SEITE 1/1

	N unverglast, gegen Außenluft Bauteil	U [W/m²K]	U-Wert-Anfdg.	Zustand
AND DESCRIPTION OF THE PARTY.	Eingangstüre		erfüllt ¹	neu
2	Eingangstüre	0,66	erfüllt ¹	neu

¹ Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV 29/2015 §41, max. 1,70W/m²K).

3. BAUTEILAUFBAUTEN - TRANSP. BAUTEILE, SEITE 1/1

Zustand:				neu
Rahmen: Hochwä Kunststoffrahmer		nender	U _f = 1,00	W/m²K
Verglasung: Inter Ug=0,6	norm Vert	oundfenstervergl.	light $U_g = 0,60$	W/m²K
Linearer Wärmeb	rückenko	effizient	psi = 0,030	W/mK
U _w bei Normfenst	ergröße:		0,81 W/m²K	erfüll
Anfdg. an Uwlt. B	TV 29/20	15 §41:	max. 1,40 W/m²K	erium
Heizkörper:				nein
Gesamtfläche:			3	5,19 m ²
Anteil an Außenw	and: 1		17.70	7,6 %
Anteil an Hüllfläch	e: 2			4,6 %
Das Bauteil erfü 29/2015 §41, ma			g für Neubauten (lt. B	TV .
Anz.	U _w ³	Bezeichnung		
9	0,81	1,30 x 1,50		
3	0,73	2,45 x 2,40		

Zustand:		neu
Rahmen: Hochwärmedämmender Kunststoffrahmen	U _f = 1,10	W/m²K
Verglasung: Internorm Verbundfenstervergl. ligh Ug=0,6	$U_g = 0,60$	W/m²K
Linearer Wärmebrückenkoeffizient	psi = 0,030	W/mK
Uw bei Normfenstergröße:	0,85 W/m2K	erfüll
Anfdg. an U _w It. BTV 29/2015 §41:	max. 1,40 W/m2K	erium
Heizkörper:	THE RESERVE OF THE PARTY OF THE	neir
Gesamtfläche:	68	166 m
Anteil an Außenwand: 1		14,7 %
Anteil an Hüllfläche: 2		8,9 %

Anz.	U _w ³	Bezeichnung	
3	0,90	2,50 x 0,90	
3	0,74	4,53 x 2,40	
3	0,75	4,00 x 2,40	

Energieausweis für Wohngebäude Nr. 49865-2

4. GUTACHTEN GEM. BEV 54/2014 §1 ABS.3 LIT.F (k2_WARttenenFeldkirchAlternativprfungHeizanlag.pdf)

SEITE 1/1

Technisches Büro – Ingenieurbüro für Bauphysik
Alte Landstrasse 39
6820 Frastanz
Tel: 05522/52953-0
Fax: 05522/52953-4
Handy: 0676/3176136
Email: office.wss@aon.at
Homepage: www.wss.or.at

Frastanz, 18. September 2014

Projekt:

Neubau Wohnanlage Rüttenen, Feldkirch

Betreff:

Alternativprüfung / Wirtschaftlichkeitsüberprüfung Heizanlage

Bei der geplanten Errichtung des Projektes "Wohnanlage Rüttenen" in Feldkirch wurde eine umfangreiche Prüfung der möglichen Heizungssysteme durchgeführt.

Im Nahbereich des geplanten Objektes ist aktuell kein möglicher Nah-, oder Fernwärmeanschluss vorhanden.

die möglichen Dementsprechend wurden sonstigen Heizsysteme (Wärmepumpensysteme, Holzheizsysteme, Gastherme usw.) durch die haustechnische Fachplanung hinsichtlich deren Wirtschaftlichkeit überprüft Hierauf basierend, konnte eine Gas-Brennwerttherme mit einer Solaranlage Warmwasserbereitung und auch heizungsunterstützt) wirtschaftlich sinnvollstes Heizsystem ermittelt werden. Dementsprechend wurde unsererseits dieses System in die aktuellen Energieausweise eingearbeitet und übernommen.

Mit freundlichen Grüßen Thomas Schwarz

Thomas librur

4.1

Energieausweis für Wohngebäude Nr. 49865-2

5. DATENBLATT WOHNBAUFÖRDERUNG NEUBAU

Fördermodell Wohnungsneubau 2016/17

Soll Ist

Gebäudekategorie laut WBF privater Wohnbau

HGT 3.517 Kd

Art der Lüftung Fensterlüftung

Datenfreigabe WBF

Basisanforderungen

Daten und Berechnungsergebnisse werden der Förderstelle und von dieser mit der Qualitätssicherung beauftragten Dienstleister für die weitere Abwicklung des Förderantrags und für die Qualitätssicherung zur Verfügung gestellt.

Produktkennwerte Ol3-Daten beinhalten.

HWB _{RK}	≤ 37,38	36,33	kWh / m²a	erfüllt	Der Grenzwert für den Heizwärmebedarf kann gemäß Neubauförderrichtlinie 2016/17 (§ 10 Abs. 6) am Gebäudestandort (HWB _{SK}) oder am Referenzstandort (HWB _{RK}) nachgewiesen werden.
PEB	≤ 150,00	111,44	kWh / m²a	erfüllt	Am Gebäudestandort sind die Grenzwerte für den Primärenergiebedarf (PEB) und für CO ₂ -Emissionen gemäß Neubauförderrichtlinie 2016/17 (§ 10 Abs. 6) ohne Einrechnung von Erträgen einer Photovoltaikanlage
CO ₂	≤ 24,00	20,37	kg _{CO2} / m²a	erfüllt	einzuhalten.
Förderkriterien				erfüllt	Alle zur Gewährung eines Darlehens gemäß Neubauförderrichtlinie 2016/17 (§ 10 Abs. 6) erforderlichen objektbezogenen Grenzwerte (Heizwärmebedarf, Primärenergiebedarf, CO ₂ -Emissionen) wurden eingehalten.
Energiesparbonus	Soll	Ist		Bonus	
HWB _{SK}	≤ 36,00	37,65	kWh / m²a	_	Die Mindestanforderung an den Heizwärmebedarf (HWB) gemäß Neubauförderrichtlinie 2016/17 (§ 12 Abs. 2 lit. c) wird nicht eingehalten – es kann kein Energiesparbonus geltend gemacht werden.
PEB	≤ 118,00	111,44	kWh / m²a	4,00 €	Der Energiesparbonus kann aufgrund der Verbesserung des Grenzwertes für den Primärenergiebedarf (PEB) gemäß Neubauförderrichtlinie 2016/17 (§ 12 Abs. 2 lit. c) geltend gemacht werden.
CO ₂	≤ 20,00	20,37	kg _{CO₂} / m²a	-	Die Mindestanforderung an die Kohlendioxidemissionen (CO ₂) gemäß Neubauförderrichtlinie 2016/17 (§ 12 Abs. 2 lit. c) wird nicht eingehalten – es kann kein Energiesparbonus geltend gemacht werden.
OI3	≤ 135,00	175,19	Punkte	-	Ol3-Punkte und entsprechende Ol3-Fördermittel können nicht ausgewiesen werden, da die entsprechenden Daten mit der Schnittstelle nicht übermittelt wurden oder weil nicht alle verwendeten Richt- und

Anforderung

Energieausweis für Wohngebäude OIB ONT. 49865-2

6. ERGEBNISSEITE GEM. OIB RL 6

GEBÄUDEKENNDATEN

Brutto-Grundfläche	448,3 m ²	Klimaregion	West	mittlerer U-Wert	0,28 W/m ² K
Bezugs-Grundfläche	358,6 m ²	Heiztage	201 d	Bauweise	mittelschwer
Brutto-Volumen	1.368,4 m ³	Heizgradtage	3.517 Kd	Art der Lüftung	Fensterlüftung
Gebäude-Hüllfläche	761,79 m ²	Norm-Außentemperatur	-12,7 °C	Sommertauglichkeit	erfüllt
Kompaktheit (A/V)	0,56 m ⁻¹	Soll-Innentemperatur	20 °C	LEK _T -Wert	21,85
characteristische Länge	1.80 m				

WÄRME- UND ENERGIEBEDARF

	Referenzklima spezifisch	Standertklima zonenbezogen	spezifisch	Anforderung	
HWB	36,3 kWh/m²a	16.877 kWh/a	37,7 kWh/m²a	40,1 kWh/m²a	erfüllt
WWWB		5.738 kWh/a	12,8 kWh/m²a		
HTEB _{RH}		912 kWh/a	2,0 kWh/m²a		
HTEB _{WW}		224 kWh/a	0,5 kWh/m²a		
HTEB		13.102 kWh/a	29,2 kWh/m²a		
HEB		24.842 kWh/a	55,4 kWh/m²a		
HHSB		7.363 kWh/a	16,4 kWh/m²a		
EEB		32.205 kWh/a	71,8 kWh/m²a	100,0 kWh/m²a	erfüllt
PEB		49.952 kWh/a	111,4 kWh/m²a		
PEB _{n.ern.}		45.974 kWh/a	102,6 kWh/m²a		
PEB _{em.}		3.978 kWh/a	8,9 kWh/m²a		
CO ₂		9.132 kg/a	20,4 kg/m²a		
f _{GEE}	_		0,62		

Dieses Beiblatt zum Energieausweis dient zur Unterstützung beim Antrag um Bundesförderung (Sanierungsscheck), ersetzt jedoch nicht Teile des in der Vorarlberger Baueingabeverordnung definierten Energieausweises.

Ol3-Klassifizierung - Ökologie der Bauteile WA Rüttenen, Feldkirch - Haus 2

Datum	BAUBOOK: 13.09.2016		V _B A _B BGF	761	52	c 1,80 m OF 1.060,63 m 0,28 W/m		
Bautei	le			Fläche	PEI	GWP	AP	∆ Ol3
				A [m²]	[MJ]	[kg CO2]	[kg SO2]	
AW01	Aussenwand allgemein			348,3	411.271,4	33.708,6	94,9	91,8
FD01	Flachdach allgemein			149,4	205.583,0		43,9	102,2
ID01	Fussboden zur Tiefgarage			149,4	338.518,8		88,7	187,4
ZD01	Warme Zwischendecke			298,8	368.049,8		93,5	101,9
FE/TÜ	Fenster und Türen			114,7	143.192,5 1.466.616	6.486,5 118.972	41,4	99,2
		Summe			1.400.010	110.972	363	
		PEI (Primäre Ökoindikato	200	nhalt nich	nt erneuerba	ar) [MJ/m OI PEI F	² KOF] Punkte	1.382,84 88,28
		GWP (Globa Ökoindikato		ing Poten	tial)	[kg CO2/m OI GWP I		112,18 81,09
		AP (Versäue Ökoindikato	10.7500			[kg SO2/m OI AP F		0,34 52,75
		OI3-BGF (Ök	oindika	ator)		OI3- BGF F	Punkte	175,19
		OI3-BGF = (0	DI PEI +	OI GWP	+ OI AP) / 3	* KOF / BGF		
						* KOF / BGF		
	40	OI3-BGF = (0				* KOF / BGF		

ökologische Belastung

D

A

sehr gering

sehr hoch

Baubook - Schichten WA Rüttenen, Feldkirch - Haus 2

Schichtbezeichnung Baubook Bezeichnung	Indexnr.	Lambda Dichte [W/mK] [kg/m³]		Datum	im Bauteil
Trittschalldämmung ISOVER TRITTSCHALL-DÄMMPLATTE T	2142685856	0,042	80 13	09.04.2014	ZD01, ID01
Dampfsperre (zB: Vap 2000 o. glw.) Sarnavap 2000 E	2142699480	0,350	930 13	29.05.2014 13.09.2016	FD01, ID01
Deckputz (Silikonharzputz) RÖFIX Silikonharzputz PREMIUM	2142685312	0,700	1.800 13	1.800 13.09.2016	AW01
Grundputz RÖFIX 510 Kalk-Zement-Grundputz	2142685444	0,470	1.350 13	1.350 13.09.2016	AW01
Polystyrol EPS-W-25 EPS-W 20 (19.5 kg/m³)	2142714926	0,038	20 13	29.05.2014 20 13.09.2016	ZD01, ID01
Polystyrol EPS-W-25 (im Mittel) EPS-W 20 (19.5 kg/m³)	2142714926	0,038	20 13	29.05.2014 13.09.2016	FD01
Spachtelputz Baumit KalkzementPutz KZP 65	2142710264	0,830	1.600 13	1.600 13.09.2016	AW01, FD01, ZD01
Stahlbeton Stahlbeton 160 kg/m³ Armierungsstahl (2 Vol.%)	2142717550	2,500	2.400 13	29.05.2014	AW01, FD01, ZD01, ID01
Tektalan-SD KI Tektalan-SD, A2-SD	2142686614	0,053	212 13	212 13.09.2016	ID01
Zementestrich RÖFIX 970 Zementestrich	2142685424	1,600	2.100 13	29.05.2014 13.09.2016	ZD01, ID01
Kleber mineralisch	2142684362	1,000	1.800 13	1.800 13.09.2016	AW01
RÖFIX EPS-F 031 EPS-Fassadendämmplatte "Lambdapor"	2142685399	0,031	15 13	15 13.09.2016	AW01

OI3 - Fenster und Türen

WA Rüttenen, Feldkirch - Haus 2

214268673 Freisinger Frostkorken-Haustüre

DOMINANT 3 mit Holzrahmenstock

214270459

Glas		
Index 214270710	Produktbeschreibung Internorm Verbundfenstervergl. light Ug=0,6	verwendet bei folgenden Fenstern Prüfnormmaß Typ 1 (T1) / Prüfnormmaß Typ 2 (T2) / 1,30 x 1,50 / 2,50 x 0,90 / 4,53 x 2,40 / 4,00 x 2,40 / 2,45 x 2,40
Rahmen		
Index	Produktbeschreibung	verwendet bei folgenden Fenstern
214268487	Hochwärmedämmender Kunststoffrahmen	Prüfnormmaß Typ 1 (T1) / Prüfnormmaß Typ 2 (T2) / 1,30 x 1,50 / 2,50 x 0,90 / 4,53 x 2,40 / 4,00 x 2,40 / 2,45 x 2,40
PSI		
Index	Produktbeschreibung	verwendet bei folgenden Fenstern
214268420	Kunststoff/Butyl (3-IV; Ug 0,9 - 1,4; Uf <1,4)	Prüfnormmaß Typ 1 (T1) / Prüfnormmaß Typ 2 (T2) / 1,30 x 1,50 / 2,50 x 0,90 / 4,53 x 2,40 / 4,00 x 2,40 / 2,45 x 2,40
Türen	1	
Index	Produktbeschreibung	verwendet bei folgenden Türen

Eingangstüre / Eingangstüre

Eingangstüre

Eingangstüre / Eingangstüre /

Datenblatt GEQ WA Rüttenen, Feldkirch - Haus 2

Anzeige in Druckwerken und elektronischen Medien

Ergebnisse bezogen auf Feldkirch

HWB_{SK} 38 f_{GEE} 0,62

Gehär	idedatei	n - Neu	hau
CICUAL	Jucuale	I - INCU	uau

Brutto-Grundfläche BGF 448 m² Konditioniertes Brutto-Volumen 1.368 m³ Gebäudehüllfläche A_B 762 m² Wohnungsanzahl 6 charakteristische Länge I_C 1,80 m Kompaktheit A_B / V_B 0,56 m⁻¹

Ermittlung der Eingabedaten

Geometrische Daten:

Bauphysikalische Daten:

Haustechnik Daten:

Ergebnisse am tatsächlichen Standort: Feldkirch

Transmissionswärmeverluste Q _T		21.329	kWh/a
Lüftungswärmeverluste Q _V	Luftwechselzahl: 0,4	12.837	kWh/a
Solare Wärmegewinne η x Q s		8.043	kWh/a
Innere Wärmegewinne η x Q i	mittelschwere Bauweise	8.850	kWh/a
Heizwärmebedarf Q _h		16.877	kWh/a

Ergebnisse Referenzklima

Transmissionswärmeverluste Q _T	19.615	kWh/a
Lüftungswärmeverluste Q _V	11.810	kWh/a
Solare Wärmegewinne η x Q s	6.979	kWh/a
Innere Wärmegewinne η x Q i	8.161	kWh/a
Heizwärmebedarf Q _h	16.285	kWh/a

Haustechniksystem

Raumheizung: Flüssiger oder gasförmiger Brennstoff (Gas) + Solaranlage hochselektiv 24m²

Warmwasser: Kombiniert mit Raumheizung + Solaranlage hochselektiv 24m²

Lüftung: Fensterlüftung, Nassraumlüfter vorhanden

Berechnungsgrundlagen

Der Energieausweis wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH www.geq.at Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile vereinfacht nach ON B 8110-6 / Unkonditionierte Gebäudeteile vereinfacht nach ON B 8110-6 / Wärmebrücken pauschal nach ON B 8110-6 / Verschattung vereinfacht nach ON B 8110-6

Verwendete Normen und Richtlinien:

ON B 8110-1 / ON B 8110-2 / ON B 8110-3 / ON B 8110-5 / ON B 8110-6 / ON H 5055 / ON H 5056 / ON EN ISO 13790 / ON EN ISO 13370 / ON EN ISO 6946 / ON EN ISO 10077-1 / ON EN 12831 / OIB Richtlinie 6

Anmerkung:

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den tatsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

Bauteil Anforderungen WA Rüttenen, Feldkirch - Haus 2

BAUTEILE	R-Wert	R-Wert min	U-Wert	U-Wert max	Erfüllt
AW01 Aussenwand allgemein			0,16	0,30	Ja
ID01 Fussboden zur Tiefgarage	6,55	3,50	0,14	0,30	Ja
FD01 Flachdach allgemein			0,13	0,20	Ja
ZD01 Warme Zwischendecke			0,45	0,90	Ja
FENSTER			U-Wert	U-Wert max	Erfüllt
Eingangstüre (unverglaste Tür gegen Außenluft)			0,66	1,70	Ja
Eingangstüre (unverglaste Tür gegen Außenluft)			1,10	1,70	Ja
Prüfnormmaß Typ 1 (T1) (gegen Außenluft vertikal)			0,81	1,40	Ja
Prüfnormmaß Typ 2 (T2) (gegen Außenluft vertikal)			0,85	1,40	Ja

Einheiten: R-Wert [m²K/W], U-Wert [W/m²K] Quelle U-Wert max: BTV LGBI.Nr. 84/2012 U-Wert berechnet nach ÖNORM EN ISO 6946

Heizlast Abschätzung WA Rüttenen, Feldkirch - Haus 2

Abschätzung der Gebäude-Heizlast auf Basis der Energieausweis-Berechnung

Energieausweis-Berechnung	
Berechnungsblatt	
Bauherr	Baumeister / Baufirma / Bauträger / Planer
Firma A.S.T. Baugesellschaft mbH	Pichler Bau + Plan GmbH
Rüttenenstrasse 25	Hauptstrasse 4
6800 Feldkirch	6706 Bürs
Tel.: priv.0664/2003544 geschäftl.05522/72	Tel.: priv.0664/3579933 geschäftl.05552/32100
Norm-Außentemperatur: -12,7 °C	Standort: Feldkirch
Berechnungs-Raumtemperatur: 20 °C	Brutto-Rauminhalt der
Temperatur-Differenz: 32,7 K	beheizten Gebäudeteile: 1.368,43 m³
	Gebäudehüllfläche: 761,79 m²
Bauteile	Fläche Wärmed Korr Korr Leitwert
	$egin{array}{ccccc} A & U & f & ffh \\ [m^2] & [W/m^2\ K] & [1] & [1] & [W/K] \end{array}$
AW01 Aussenwand allgemein	348,26 0,164 1,00 57,26
FD01 Flachdach allgemein	149,42 0,131 1,00 19,64
FE/TÜ Fenster u. Türen	114,70 0,782 89,71
ID01 Fussboden zur Tiefgarage	149,42 0,143 0,80 1,46 24,92
Summe OBEN-Bauteile	149,42
Summe UNTEN-Bauteile Summe Außenwandflächen	149,42 348,26
Fensteranteil in Außenwänden 24,8 %	114,70
Summe	[W/K] 192
Wärmebrücken (vereinfacht)	[W/K] 19
Transmissions - Leitwert L _T	[W/K] 210,68
Lüftungs - Leitwert L _V	[W/K] 126,80
Gebäude-Heizlast Abschätzung	Luftwechsel = 0,40 1/h [kW] 11,0

[W/m² BGF]

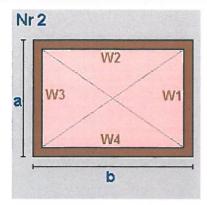
24,62

Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers. Für die exakte Dimensionierung ist eine Heizlast-Berechnung nach ÖNORM H 7500 erforderlich.

Flächenbez. Heizlast Abschätzung (448 m²)

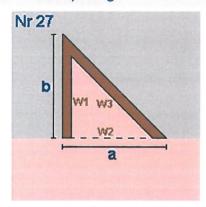
Bauteile

WA Rüttenen, Feldkirch - Haus 2

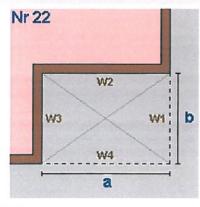

AW01	Aussenwand allgemein				
		von Innen nach	Außen Dicke	λ	d/λ
Spachtel	putz		0,0050	0,830	0,006
Stahlbeto	and the state of t		0,2000	2,500	0,080
Kleber m	ineralisch		0,0050	1,000	0,005
RÖFIX E	PS-F 031 EPS-Fassadendämmplatte "Lar	mbdapor"	0,1800	0,031	5,806
Grundpu	tz		0,0050	0,470	0,011
Deckputz	z (Silikonharzputz)		0,0030	0,700	0,004
		Rse+Rsi = 0,17	Dicke gesamt 0,3980	U-Wert	0,16
ID01	Fussboden zur Tiefgarage				
	3 - 3	von Innen nach	Außen Dicke	λ	d/ λ
Bodenbe	elag	#	0,0100	0,150	0,067
Zemente	-	F	0,0700	1,600	0,044
	perre (zB: Vap 2000 o. glw.)	#	0,0002	0,350	0,001
	lldämmung		0,0300	0,042	0,714
	ol EPS-W-25		0,1800	0,038	4,737
Stahlbeto			0,3800	2,500	0,152
Tektalan	-SD		0,0500	0,053	0,943
		Rse+Rsi = 0,34	Dicke gesamt 0,7202	U-Wert	0,14
FD01	Flachdach allgemein				
	12 M.A.	von Außen nach	n Innen Dicke	λ	d/λ
Rundkies	s 16/32	# *	0,0600	0,700	0,086
Trennvlie		#	0,0004	0,500	0,001
Dachhau	it (zB: Sarnafil TG 66 o. glw.)	#	0,0018	0,170	0,011
Polystyro	ol EPS-W-25 (im Mittel)		0,2800	0,038	7,368
Dampfsp	erre (zB: Vap 2000 o. glw.)		0,0002	0,350	0,001
Trennvlie	es	#	0,0004	0,500	0,001
Stahlbeto	on		0,2000	2,500	0,080
Spachtel	putz		0,0050	0,830	0,006
			Dicke 0,4878		
		Rse+Rsi = 0,14	Dicke gesamt 0,5478	U-Wert	0,13
ZD01	Warme Zwischendecke				
		von Innen nach	Außen Dicke	λ	d/ λ
Bodenbe	elag	#	0,0100	0,150	0,067
Zemente	estrich	F	0,0700	1,600	0,044
Dampfbr	emse (zB: Vap 1000 o. glw.)	#	0,0002	0,350	0,001
Trittscha	lldämmung		0,0300	0,042	0,714
	ol EPS-W-25		0,0400	0,038	1,053
Stahlbeto	on		0,2200	2,500	0,088
Spachtel	putz		0,0050	0,830	0,006
		Rse+Rsi = 0,26	Dicke gesamt 0,3752	U-Wert	0,45

Dicke ... wärmetechnisch relevante Dicke

Einheiten: Dicke [m], Achsabstand [m], Breite [m], U-Wert [W/m²K], Dichte [kg/m³], / [W/mK]


*... Schicht zählt nicht zum U-Wert #... Schicht zählt nicht zur Ol3-Berechnung
RTu ... unterer Grenzwert RTo ... oberer Grenzwert laut ÖNORM EN ISO 6946

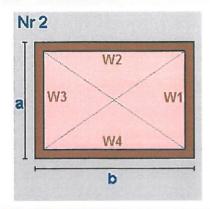
EG Grundform


```
Von EG bis OG2
a = 10,29 b = 14,30
lichte Raumhöhe = 2,40 + obere Decke: 0,38 => 2,78m
          147,15m<sup>2</sup> BRI
                          408,36m³
Wand W1
           28,56m2 AW01 Aussenwand allgemein
           39,69m<sup>2</sup> AW01
Wand W2
Wand W3
          28,56m2 AW01
Wand W4
          39,69m² AW01
Decke
          147,15m² ZD01 Warme Zwischendecke
          147,15m² ID01 Fussboden zur Tiefgarage
Boden
```

EG Vorsprung

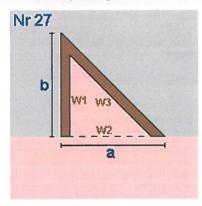

```
Von EG bis OG2 a = 14,30 \qquad b = 1,31 lichte Raumhöhe = 2,40 + obere Decke: 0,38 \Rightarrow 2,78m BGF 9,37m² BRI 25,99m³ Wand W1 3,64m² AW01 Aussenwand allgemein Wand W2 -39,69m^2 AW01 Wand W3 39,85m^2 AW01 Decke 9,37m² ZD01 Warme Zwischendecke Boden 9,37m² ID01 Fussboden zur Tiefgarage
```

EG Rücksprung

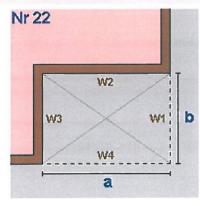



```
Von EG bis OG2
a = 1,50 b = 4,73
lichte Raumhöhe = 2,40 + obere Decke: 0,38 => 2,78m
           -7,10m<sup>2</sup> BRI
                           -19,69m^3
         -13,13m<sup>2</sup> AW01 Aussenwand allgemein
Wand W1
Wand W2
            4,16m2 AW01
Wand W3
          13,13m2 AW01
           -4,16m2 AW01
Wand W4
           -7,10m2 ZD01 Warme Zwischendecke
Decke
           -7,10m² ID01 Fussboden zur Tiefgarage
Boden
```

EG Summe


EG Bruttogrundfläche [m²]: 149,42 EG Bruttorauminhalt [m³]: 414,67

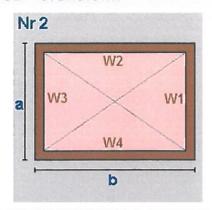
OG1 Grundform


```
Von EG bis OG2
a = 10,29 b = 14,30
lichte Raumhöhe = 2,40 + obere Decke: 0,38 => 2,78m
          147,15m<sup>2</sup> BRI
                          408,36m<sup>3</sup>
           28,56m<sup>2</sup> AW01 Aussenwand allgemein
Wand W1
           39,69m<sup>2</sup> AW01
Wand W2
           28,56m<sup>2</sup> AW01
Wand W3
           39,69m² AW01
Wand W4
         147,15m² ZD01 Warme Zwischendecke
Decke
        -147,15m2 ZD01 Warme Zwischendecke
Boden
```

OG1 Vorsprung

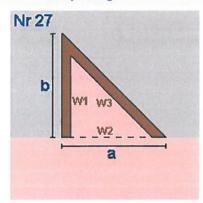

```
Von EG bis OG2 a = 14,30 \qquad b = 1,31 \\ \text{lichte Raumhöhe} = 2,40 + \text{obere Decke: 0,38} \Rightarrow 2,78 \\ \text{m} \\ \text{BGF} \qquad 9,37 \\ \text{m}^2 \quad \text{BRI} \qquad 25,99 \\ \text{m}^3 \\ \text{Wand W1} \qquad 3,64 \\ \text{m}^2 \quad \text{AW01 Aussenwand allgemein} \\ \text{Wand W2} \quad -39,69 \\ \text{m}^2 \quad \text{AW01} \\ \text{Wand W3} \qquad 39,85 \\ \text{m}^2 \quad \text{AW01} \\ \text{Decke} \qquad 9,37 \\ \text{m}^2 \quad \text{ZD01} \quad \text{Warme Zwischendecke} \\ \text{Boden} \qquad -9,37 \\ \text{m}^2 \quad \text{ZD01} \quad \text{Warme Zwischendecke} \\ \text{Solution of the control of the c
```

OG1 Rücksprung

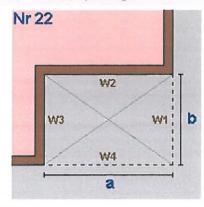



```
Von EG bis OG2  a = 1,50 \qquad b = 4,73 \\  \mbox{lichte Raumhöhe} = 2,40 + \mbox{obere Decke: 0,38} \Rightarrow 2,78m \\  \mbox{BGF} \qquad -7,10m^2 \mbox{ BRI} \qquad -19,69m^3 \\  \mbox{Wand W1} \qquad -13,13m^2 \mbox{ AW01} \mbox{ Aussenwand allgemein} \\  \mbox{Wand W2} \qquad 4,16m^2 \mbox{ AW01} \\  \mbox{Wand W3} \qquad 13,13m^2 \mbox{ AW01} \\  \mbox{Wand W4} \qquad -4,16m^2 \mbox{ AW01} \\  \mbox{Decke} \qquad -7,10m^2 \mbox{ ZD01} \mbox{ Warme Zwischendecke} \\  \mbox{Boden} \qquad 7,10m^2 \mbox{ ZD01} \mbox{ Warme Zwischendecke} \\  \mbox{Boden} \qquad -7,10m^2 \mbox{ ZD01} \mbox{ Warme Zwischendecke} \\  \mbox{Boden} \qquad -7,10m^2 \mbox{ ZD01} \mbox{ Warme Zwischendecke} \\ \mbox{ Warm
```

OG1 Summe


OG1 Bruttogrundfläche [m²]: 149,42 OG1 Bruttorauminhalt [m³]: 414,67

OG2 Grundform


```
Von EG bis OG2
a = 10,29 b = 14,30
lichte Raumhöhe = 2,40 + \text{obere Decke: } 0,49 \Rightarrow 2,89m
          147,15m<sup>2</sup> BRI
                            424,93m3
Wand W1
           29,72m² AW01 Aussenwand allgemein
           41,30m<sup>2</sup> AW01
Wand W2
Wand W3
           29,72m<sup>2</sup> AW01
          41,30m<sup>2</sup> AW01
Wand W4
Decke
          147,15m2 FD01 Flachdach allgemein
         -147,15m² ZD01 Warme Zwischendecke
Boden
```

OG2 Vorsprung

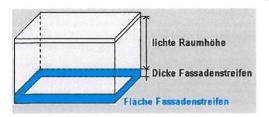

```
Von EG bis OG2 a=14,30 \qquad b=1,31 \\ \mbox{lichte Raumhöhe} = 2,40 + \mbox{obere Decke: 0,49} \Rightarrow 2,89m \\ \mbox{BGF} \qquad 9,37m^2 \mbox{ BRI} \qquad 27,05m^3 \\ \mbox{Wand W1} \qquad 3,78m^2 \mbox{ AW01 Aussenwand allgemein} \\ \mbox{Wand W2} \qquad -41,30m^2 \mbox{ AW01} \\ \mbox{Wand W3} \qquad 41,47m^2 \mbox{ AW01} \\ \mbox{Decke} \qquad 9,37m^2 \mbox{ FD01 Flachdach allgemein} \\ \mbox{Boden} \qquad -9,37m^2 \mbox{ ZD01 Warme Zwischendecke} \\ \mbox{ Aussenwand allgemein} \\ \mbox{ Aussenwand allgemein} \\ \mbox{ Boden} \qquad -9,37m^2 \mbox{ ZD01 Warme Zwischendecke} \\ \mbox{ Aussenwand allgemein} \\ \mbox{ Aussenwand allgemei
```

OG2 Rücksprung

Von EG bis OG2 $a = 1,50 \qquad b = 4,73$ lichte Raumhöhe = 2,40 + obere Decke: 0,49 \Rightarrow 2,89m BGF $-7,10\text{m}^2$ BRI $-20,49\text{m}^3$ Wand W1 $-13,66\text{m}^2$ AW01 Aussenwand allgemein Wand W2 $4,33\text{m}^2$ AW01 Wand W3 $13,66\text{m}^2$ AW01 Wand W4 $-4,33\text{m}^2$ AW01 Decke $-7,10\text{m}^2$ FD01 Flachdach allgemein Boden $7,10\text{m}^2$ ZD01 Warme Zwischendecke

OG2 Summe

OG2 Bruttogrundfläche [m²]: 149,42 OG2 Bruttorauminhalt [m³]: 431,49


Deckenvolumen ID01

Fläche 149,42 m^2 x Dicke 0,72 $m = 107,61 m^3$

Bruttorauminhalt [m³]: 107,61

Fassadenstreifen - Automatische Ermittlung

Wand Boden Dicke Länge Fläche
AW01 - ID01 0,720m 50,55m 36,41m²

Gesamtsumme Bruttogeschoßfläche [m²]: 448,26 Gesamtsumme Bruttorauminhalt [m³]: 1.368,43

Fenster und Türen WA Rüttenen, Feldkirch - Haus 2

Тур		Bauteil	Anz	. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs
		Prüfnor	mma	ß Typ 1 (T1)	1,23	1,48	1,82	0,60	1,00	0,030	1,19	0,81		0,54	
		Prüfnor	mma	ß Typ 2 (T2)	1,23	1,48	1,82	0,60	1,10	0,030	1,19	0,85		0,49	
				,,,		•			150		2,38			-,	
NO					1										
T1	EG	AW01	3	1,30 x 1,50	1,30	1,50	5,85	0,60	1,00	0,030	3,88	0,81	4,71	0,54	0,75
T1	OG1	AW01	3	1,30 x 1,50	1,30	1,50	5,85	0,60	1,00	0,030	3,88	0,81	4,71	0,54	0,75
T1	OG2	AW01	3	1,30 x 1,50	1,30	1,50	5,85	0,60	1,00	0,030	3,88	0,81	4,71	0,54	0,75
*			9				17,55				11,64		14,13		
NW					-										
T2	EG	AW01	1	4,00 x 2,40	4,00	2,40	9,60	0,60	1,10	0,030	7,72	0,75	7,17	0,49	0,75
T2	EG	AW01	1	4,53 x 2,40	4,53	2,40	10,87	0,60	1,10	0,030	8,84	0,74	8,05	0,49	0,75
T1	EG	AW01	1	2,45 x 2,40	2,45	2,40	5,88	0,60	1,00	0,030	4,69	0,73	4,26	0,49	0,75
T2	OG1	AW01	1	4,53 x 2,40	4,53	2,40	10,87	0,60	1,10	0,030	8,84	0,74	8,05	0,49	0,75
T2	OG1	AW01	1	4,00 x 2,40	4,00	2,40	9,60	0,60	1,10	0,030	7,72	0,75	7,17	0,49	0,75
T1	OG1	AW01	1	2,45 x 2,40	2,45	2,40	5,88	0,60	1,00	0,030	4,69	0,73	4,26	0,49	0,75
T2	OG2	AW01	1	4,53 x 2,40	4,53	2,40	10,87	0,60	1,10	0,030	8,84	0,74	8,05	0,49	0,75
T2	OG2	AW01	1	4,00 x 2,40	4,00	2,40	9,60	0,60	1,10	0,030	7,72	0,75	7,17	0,49	0,75
T1	OG2	AW01	1	2,45 x 2,40	2,45	2,40	5,88	0,60	1,00	0,030	4,69	0,73	4,26	0,49	0,75
			9				79,05				63,75		58,44		
SO													-171		
T2	EG	AW01	1	2,50 x 0,90	2,50	0,90	2,25	0,60	1,10	0,030	1,33	0,90	2,01	0,52	0,75
T2	OG1	AW01	1	$2,50 \times 0,90$	2,50	0,90	2,25	0,60	1,10	0,030	1,33	0,90	2,01	0,52	0,75
T2	OG2	AW01	1	2,50 x 0,90	2,50	0,90	2,25	0,60	1,10	0,030	1,33	0,90	2,01	0,52	0,75
		16.7	3				6,75				3,99)) c3//	6,03		
SW													THE ST	5,45	
	EG	AW01	1	Eingangstüre	0,90	2,10	1,89					1,10	2,08		
	EG	AW01	1	Eingangstüre	0,90	2,10	1,89					1,10	2,08		
	OG1	AW01	1	Eingangstüre	0,90	2,10	1,89					0,66	1,25		
9	OG1	AW01	1	Eingangstüre	0,90	2,10	1,89					1,10	2,08		
3	OG2	AW01	1	Eingangstüre	0,90	2,10	1,89					0,66	1,25		
	OG2	AW01	1	Eingangstüre	0,90	2,10	1,89					1,10	2,08		
			6				11,34				0,00		10,82		
umme	1		27				114,69				79,38		89,42		

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor

Typ... Prüfnormmaßtyp

Rahmen WA Rüttenen, Feldkirch - Haus 2

Bezeichnung	Rb.re.	Rb.li. m	Rb.o.	Rb.u. m	%	Stulp Anz.	Stb	Pfost Anz.	Pfb. m	V-Sp. Anz.	Spb.	
Typ 1 (T1)	0,120	0,120	0,140	0,140	35							Hochwärmedämmender Kunststoffrahmen
Typ 2 (T2)	0,120	0,120	0,140	0,140	35							Hochwärmedämmender Kunststoffrahmen
1,30 x 1,50	0,120	0,120	0,140	0,140	34							Hochwärmedämmender Kunststoffrahmen
2,50 x 0,90	0,120	0,120	0,140	0,140	41			1	0,120			Hochwärmedämmender Kunststoffrahmen
4,00 x 2,40	0,120	0,120	0,140	0,140	20			1	0,120			Hochwärmedämmender Kunststoffrahmen
4,53 x 2,40	0,120	0,120	0,140	0,140	19			1	0,120			Hochwärmedämmender Kunststoffrahmen
2,45 x 2,40	0,120	0,120	0,140	0,140	20							Hochwärmedämmender Kunststoffrahmen

Rb.li,re,o,u Rahmenbreite links,rechts,oben, unten [m] Stb. Stulpbreite [m] H-Sp. Anz Pfb. Pfostenbreite [m] V-Sp. Anz Typ Prüfnormmaßtyp

H-Sp. Anz Anzahl der horizontalen Sprossen V-Sp. Anz Anzahl der vertikalen Sprossen

% Rahmenanteil des gesamten Fensters Spb. Sprossenbreite [m]

Monatsbilanz Standort HWB WA Rüttenen, Feldkirch - Haus 2

Standort: Feldkirch

BGF 448,26 m² L_T 210,68 W/K Innentemperatur 20 °C tau 81,10 h BRI 1.368,43 m³ L_V 126,80 W/K a 6,068

Monate	Tage	Mittlere Außen- temp.	Trans wärme- verluste	Lüftungs- wärme- verluste	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Verhältnis Gewinn/ Verlust	Ausnut- zungsgrad	Wärme- bedarf
		°C	kWh	kWh	kWh	kWh	kWh	kWh			kWh
Jänner	31	-1,29	3.337	2.009	5.346	1.001	380	1.381	0,26	1,00	3.965
Februar	28	0,44	2.770	1.667	4.437	904	576	1.480	0,33	1,00	2.959
März	31	4,00	2.508	1.509	4.017	1.001	954	1.954	0,49	0,99	2.076
April	30	8,16	1.796	1.081	2.877	968	1.378	2.347	0,82	0,93	529
Mai	31	12,60	1.159	698	1.857	1.001	1.781	2.781	1,50	0,65	0
Juni	30	15,69	653	393	1.047	968	1.851	2.820	2,69	0,37	0
Juli	31	17,77	350	210	560	1.001	1.935	2.936	5,24	0,19	0
August	31	17,03	466	280	746	1.001	1.659	2.660	3,56	0,28	0
September	30	13,96	916	551	1.467	968	1.222	2.190	1,49	0,65	0
Oktober	31	9,07	1.714	1.031	2.745	1.001	711	1.712	0,62	0,98	945
November	30	3,59	2.490	1.498	3.988	968	406	1.374	0,34	1,00	2.615
Dezember	31	-0,23	3.171	1.908	5.079	1.001	291	1.291	0,25	1,00	3.788
Gesamt	365		21.329	12.837	34.166	11.780	13.145	24.925			16.877
			nu	tzhare Gew	inne [.]	8 850	8 043	16 894			

 $HWB_{BGF} = 37,65 \text{ kWh/m}^2\text{a}$

Ende Heizperiode: 23.04. Beginn Heizperiode: 05.10.

Monatsbilanz Referenzklima HWB WA Rüttenen, Feldkirch - Haus 2

Standort: Referenzklima

BGF $448,26 \text{ m}^2$ L_T 210,61 W/K Innentemperatur 20 °C tau 81,11 h BRI $1.368,43 \text{ m}^3$ L_V 126,80 W/K a 6,070

Monate	Tage	Mittlere Außen- temp.	Trans wärme- verluste	Lüftungs- wärme- verluste	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Verhältnis Gewinn/ Verlust	Ausnut- zungsgrad	Wärme- bedarf
		°C	kWh	kWh	kWh	kWh	kWh	kWh			kWh
Jänner	31	-1,53	3.374	2.031	5.405	1.001	386	1.386	0,26	1,00	4.019
Februar	28	0,73	2.727	1.642	4.369	904	629	1.533	0,35	1,00	2.838
März	31	4,81	2.380	1.433	3.813	1.001	963	1.964	0,51	0,99	1.867
April	30	9,62	1.574	948	2.522	968	1.365	2.333	0,93	0,89	446
Mai	31	14,20	909	547	1.456	1.001	1.866	2.867	1,97	0,50	12
Juni	30	17,33	405	244	649	968	1.957	2.925	4,51	0,22	0
Juli	31	19,12	138	83	221	1.001	2.008	3.009	13,62	0,07	0
August	31	18,56	226	136	361	1.001	1.609	2.609	7,22	0,14	0
September	30	15,03	754	454	1.207	968	1.177	2.145	1,78	0,56	16
Oktober	31	9,64	1.623	977	2.601	1.001	747	1.748	0,67	0,97	907
November	30	4,16	2.402	1.446	3.848	968	391	1.359	0,35	1,00	2.490
Dezember	31	0,19	3.104	1.869	4.973	1.001	283	1.284	0,26	1,00	3.689
Gesamt	365		19.615 nu	11.810 tzbare Gew	31.425 rinne:	11.780 8.161	13.381 6.979	25.161 15.140			16.285

 $HWB_{BGF} = 36,33 \text{ kWh/m}^2\text{a}$

20	III	ha	izui	2
	M111	110		. 9

Allgemeine Daten

Wärmebereitstellung

gebäudezentral

Abgabe

Haupt Wärmeabgabe

Flächenheizung

Systemtemperatur

40°/30°

Regelfähigkeit

Einzelraumregelung mit Thermostatventilen

Heizkostenabrechnung I

Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

<u>Verteilung</u>				Leitungslänge	en It. Defaultwerten
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Dämmung Armaturen	Leitungslänge [m]	konditioniert [%]
Verteilleitungen	Ja	2/3	Ja	24,71	0
Steigleitungen	Ja	2/3	Ja	35,86	100
Anbindeleitunge	n Ja	2/3	Ja	125,51	

Speicher

Art des Speichers

Pufferspeicher

Standort

nicht konditionierter Bereich

mit Anschluss Heizregister Solaranlage

Baujahr

ab 1994

Anschlussteile gedämmt

Nennvolumen

20001

freie Eingabe

Täglicher Bereitschaftsverlust Wärmespeicher

 $q_{b.WS} = 5,73 \text{ kWh/d}$

Defaultwert

Bereitstellung

Flüssiger oder gasförmiger Brennstoff

Standort nicht konditionierter Bereich Heizgerät Brennwertkessel

Energieträger

Bereitstellungssystem

Gas

Modulierung

mit Modulierungsfähigkeit

Heizkreis gleitender Betrieb

Baujahr Kessel

ab 2005

Nennwärmeleistung

17,06 kW Defaultwert

Korrekturwert des Wärmebereitstellungssystems k_r = 1,00% Fixwert

Kessel bei Volllast 100%

Kesselwirkungsgrad entsprechend Prüfbericht

 $\eta_{100\%}$ = 92,2% Defaultwert

Kesselwirkungsgrad bei Betriebsbedingungen

 $\eta_{be,100\%} =$

91,2%

Kessel bei Teillast 30%

Kesselwirkungsgrad entsprechend Prüfbericht

 $\eta_{30\%}$ = 98,2% Defaultwert

Kesselwirkungsgrad bei Betriebsbedingungen

 $\eta_{be,30\%} = 97,2\%$

Betriebsbereitschaftsverlust bei Prüfung q bb Pb =

q _{bb.Pb} = 1,1% Defaultwert

Hilfsenergie - elektrische Leistung

Umwälzpumpe

149,93 W Defaultwert

Speicherladepumpe

71,25 W Defaultwert

Warmwasserbereitung

Allgemeine Daten

Wärmebereitstellung

gebäudezentral

kombiniert mit Raumheizung

Abgabe

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Wärmeverteilung mit Zirkulation				Leitungslängen lt. Defaultwerten			
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Dämmung Armaturen	Leitungslänge [m]	konditionie [%]	ert	
Verteilleitungen	Ja	2/3	Ja	11,66	0		
Steigleitungen	Ja	2/3	Ja	17,93	100		
Stichleitungen				71,72	Material I	Kunststoff 1 W/m	
Zirkulationsleitui	ng Rückla	uflänge		ŀ	konditioniert	[%]	
Verteilleitung	Ja	2/3	Ja	10,66	0		
Steigleitung	Ja	2/3	Ja	17,93	100		

Speicher

Art des Speichers

Solarspeicher indirekt

Standort Baujahr nicht konditionierter Bereich

Ancohlus

q b,WS

Nennvolumen

Ab 1994 2.000 l

Täglicher Bereitschaftsverlust Wärmespeicher

men 2.000 l freie Eingabe

Anschlussteile gedämmt

mit Anschluss Heizregister Solaranlage

4,58 kWh/d

Hilfsenergie - elektrische Leistung

Zirkulationspumpe

30,94 W Defaultwert

Defaultwert

Speicherladepumpe

71,25 W Defaultwert

Thermische Solaranlage

Vereinfachte Berechnung gemäß ÖNORM H 5056

Solarkollektorart

Hochselektiv (z.B. Schwarzchrom)

Anlagentyp

primär Warmwasser, sekundär Raumheizung

Nennvolumen

2000 |

Defaultwert

Kollektoreigenschaften

Aperturfläche

24,00 m²

Kollektorverdrehung

10 Grad

Neigungswinkel

35 Grad

Regelwirkungsgrad

0,95 Fixwert

Konversionsrate

0,80

Defaultwert

Verlustfaktor

3,50

Defaultwert

<u>Umgebung</u>

Geländewinkel

0 Grad

Rohrleitungen

	Leitungslängen It. [
gedämmt	Dämmstoffdicke zu Rohrdurchmesser	Außendurch- messer [mm]	Leitungslänge	konditioniert		

vertikal

Positionierung

Ja

3/3

27,9

[%]

horizontal

Ja

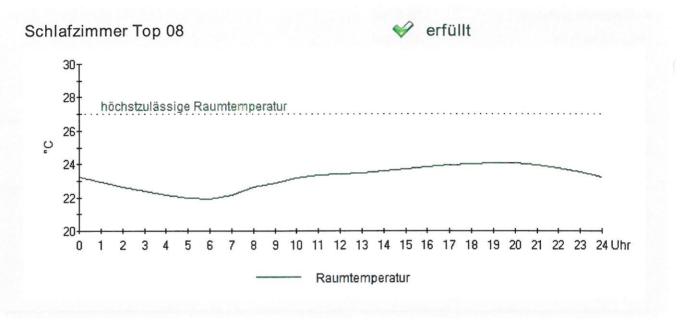
3/3

8,5 0

Hilfsenergie - elektrische Leistung

	Anzahl	gesamter Leistungsbedarf [W]	
elektrische Regelung	2	6,00	Defaultwerte
Kollektorkreispumpen	1	174,00	Defaultwerte
elektrische Ventile	2	14,00	Defaultwerte

Vermeidung sommerlicher Überwärmung


Nachweis gemäß ÖNORM B 8110-3 Ausgabe 2012-03-15

WA Rüttenen, Feldkirch - Haus 2 Rüttenenstrasse 6800 Feldkirch

Firma A.S.T. Baugesellschaft mbH

Tel.: priv.0664/2003544 gesch: Fax: 05522/72470-6750

feldkirch@ast-bau.at

Vermeidung sommerlicher Überwärmung

GEBÄUDEDATEN

KLIMADATEN

Katastralgemeinde

Feldkirch

Normsommeraußentemperatur 21,5 °C Tagesmittel

Einlagezahl

Grundstücksnummer 1642/2, 1642/5

14.2 °C min. Nacht

2016

28,1 °C max. Tag

Baujahr

Seehöhe

458m

Nutzungsprofil

Mehrfamilienhaus

Planungsstand

Neubau

	Fläche m²	höchste Raumtemp. °C	max.	niedrigste Raumtemp. °C	max. °C	Anforderung
Schlafzimmer Top 08	16,00	24,1	27,0	21,9	25,0	erfüllt

Voraussetzungen:

Einhaltung der Sicherheitserfordernisse gegen Sturm, Schlagregen, Einbruch u. dgl.

Einhaltung der Anforderungen an den Schallschutz lt. ÖNORM B 8115-2

Es sind keine wie immer gearteten Strömungsbehinderungen wie beispielsweise

Insektenschutzgitter oder Vorhänge vorhanden.

ErstellerIn

WSS Thomas Schwarz

Alte Landstrasse 39

6820 Frastanz

Unterschrift

Normsommeraußentempratur

Die Normsommeraußentemperatur ist der 24 Stunden Mittelwert (Tagesmittelwert)

der an 130 Tagen innerhalb von 10 Jahren überschritten wird.

Die Berechnung entspricht der

ÖNORM B 8110-3 Ausgabe: 2012-03-15

Wärmeschutz im Hochbau Teil 3: Vermeidung sommerlicher Überwärmung Nachweis mittels Berechnung des Tagesverlaufs der operativen Temperatur

Vermeidung sommerlicher Überwärmung WA Rüttenen, Feldkirch - Haus 2

Raum Schlafzimmer Top 08

Nutzfläche

16,00 m²

Nettovolumen

38,40 m³

Fensterlüftung

Nutzungsart innere Lasten: Wohnen

☑ Einrichtung berücksichtigt: Standardwert 38 kg/m²

✓ Schlafraum

Bauteile		Aus- richtung	Fläche m²	Neigung	Absorptions- grad	flächenbez. speicherwirk. Masse kg/m²
AW01	Aussenwand allgemein	SO	8,43	90°	0,50	292,45
AW01	Aussenwand allgemein	SW	8,66	90°	0,50	292,45
ZW01	Innenwände allgemein		19,34			23,66
ZD01	Warme Zwischendecke		16,00			117,23
FD01	Flachdach allgemein		16,00		0,50	292,35
Einricht	tung		16,00			38,00

Fenster		Anzahl	Aus- richtung			Anzahl Scheiben	_	g- Uw Wert
2,50 x 0,90	offen	1	so	2,25	90°	3	0,60	0,52 0,90

Solange die Außentemperatur geringer als die Innentemperartur ist, sind folgenden Fenster geöffnet zu halten: 2,50 x 0,90;

Verschattung	Ausricht.	Sonnenschutz	von - bis	τ_{eB}	ρ_{eB}	Fc	Fsc
2,50 x 0,90	so	Außenjalousie, hell	8:00 - 19:00	0,05	0,50	0,15	0,927

Legende

Neigung: 0° = Waagrecht, 90° = Lotrecht Fenster: zu = geschlossen, kipp. = gekippt, offen = geöffnet; Ug = U-Wert Glas; Uw = U-Wert Fenster

T eB solarer Transmissionsgrad

 $\rho_{\,\text{eB}}\,$ solarer Reflexionsgrad

F_C Abminderungsfaktor des beweglichen Sonnenschutzes in Kombination mit der Verglasung (wurde früher mit z bezeichnet)

 F_{SC} Verschattungsfaktor für Umgebung, auskragende Bauteile, Fensterlaibung It. ÖNORM B 8110-6

Speicherwirksame Masse WA Rüttenen, Feldkirch - Haus 2

AW01 Aussenwand allgemein	von Innen nach Außen	Dicke	λ		spez. Wk.
0.111	von innen nach Ausen	m	W/mk	kg/m³	J/kgK
Spachtelputz		0,0050	0,830	1.600	1.000
Stahlbeton		0,2000	2,500	2.400	1.000
Kleber mineralisch		0,0050	1,000	1.800	0
RÖFIX EPS-F 031 EPS-Fassadendämmplatte "Lambdapo	or"	0,1800	0,031	15	1.500
Grundputz		0,0050	0,470	1.350	1.000
Deckputz (Silikonharzputz)		0,0030	0,700	1.800	1.000
U-Wert 0,16 W/m²K	Speicherwirks	same Mas	sse [kg/m²]	$m_{w,B,A}$	292,45
FD01 Flachdach allgemein		Dicke	λ	Dichte	spez. Wk.
	von Außen nach Innen	m	W/mk	kg/m³	J/kgK
Rundkies 16/32	# *	0,0600	0,700	1.800	1.000
Trennvlies	#	0,0004	0,500	600	792
Dachhaut (zB: Sarnafil TG 66 o. glw.)	#	0,0018	0,170	1.000	1.400
Polystyrol EPS-W-25 (im Mittel)		0,2800	0,038	20	1.450
Dampfsperre (zB: Vap 2000 o. glw.)		0,0002	0,350	930	1.680
Trennvlies	#	0,0004	0,500	600	792
Stahlbeton		0,2000	2,500	2.400	1.000
Spachtelputz		0,0050	0,830	1.600	1.000
U-Wert 0,13 W/m²K	Speicherwirks	same Mas	sse [kg/m²]	m _{w,B,A}	292,35
ZD01 Warme Zwischendecke		Dicke	λ		spez. Wk.
	von Innen nach Außen	m	W/mk	kg/m³	J/kgK
Bodenbelag	#	0,0100	0,150	740	2.340
Zementestrich		0,0700	1,600	2.100	1.000
Dampfbremse (zB: Vap 1000 o. glw.)	#	0,0002	0,350	930	1.680
Trittschalldämmung		0,0300	0,042	80	810
Polystyrol EPS-W-25		0,0400	0,038	20	1.450
Stahlbeton		0,2200	2,500	2.400	1.000
Spachtelputz		0,0050	0,830	1.600	1.000
U-Wert 0,45 W/m²K	Speicherwirks	same Mas	sse [kg/m²]	m _{w,B,A}	117,23
ZW01 Innenwände allgemein		Dicke	λ		spez. Wk.
	von Innen nach Außen	m	W/mk	kg/m³	J/kgK
Gipskartonplatte		0,0125	0,250	900	1.000
Gipskartonplatte		0,0125	0,250	900	1.000
Glaswolle / Metallunterkonstruktion		0,0750	0,038	70	900
Gipskartonplatte		0,0125	0,250	900	1.000
Gipskartonplatte		0,0125	0,250	900	1.000
U-Wert 0,41 W/m²K	Speicherwirks	same Mas			
The Consent Act and September 2000			- [8]	m _{w,B,A}	20,00

