Energieausweis für Wohngebäude OIB OSTERREICHISCHES Nr. 84743-1

Objekt	Wohnbebauung Russareal, Lochau - Haus 3		
Gebäude (-teil)	Russareal, Lochau - Haus 3	Baujahr	2020
Nutzungsprofil	Mehrfamilienhäuser	Letzte Veränderung	ca. 2020
Straße	Toni Russ Strasse	Katastralgemeinde	Lochau
PLZ, Ort	6911 Lochau	KG-Nummer	91117
Grundstücksnr.	289	Seehöhe	415 m

SPEZIFISCHE KENNWERTE AM GEBÄUDESTANDORT	HWB _{Ref.} kWh/m²a	PEB kWh/m²a	CO₂ kg/m²a	f _{GEE}
				x/y
A++	10	60	8	0.55
A+	15	A+ 69	A 10	0,70
A	В 29	80		A 0,81
В		160	30	1,00
С	100	220	40	1,75
D	150	280	50	2,50
E	200	340	60	3,25
F	250	400	70	4,00
G				

HWB_{Ref.}: Der Referenz-Heizwärmebedarf beschreibt jene Wärmemenge, die in einem Raum bereitgestellt werden muss, um diesen auf einer normativ geforderten Raumtemperatur (bei Wohngebäude 20°C) halten zu können. Dabei werden etwaige Erträge aus Wärmerückgewinnung bei vorhandener raumlufttechnischer Anlage nicht berücksichtigt.

NEB (Nutzenergiebedarf): Energiebedarf für Raumwärme (siehe HWB) und Energiebedarf für das genutzte Warmwasser.

EEB: Gesamter Nutzenergiebedarf (NEB) inklusive der Verluste des haustechnischen Systems und aller benötigten Hilfsenergien, sowie des Strombedarfs für Geräte und Beleuchtung. Der **Endenergiebedarf** entspricht – unter Zugrundelegung eines normierten Benutzerverhaltens – jener Energiemenge, die eingekauft werden muss.

PEB: Der **Primärenergiebedarf** für den Betrieb berücksichtigt in Ergänzung zum Endenergiebedarf (EEB) den Energiebedarf aus vorgelagerten Prozessen (Gewinnung, Umwandlung, Verteilung und Speicherung) für die eingesetzten Energieträger.

CO₂: Gesamte dem Endenergiebedarf (EEB) zuzurechnende Kohlendioxidemissionen für den Betrieb des Gebäudes einschließlich der Emissionen aus vorgelagerten Prozessen (Gewinnung, Umwandlung, Verteilung und Speicherung) der eingesetzten Energieträger.

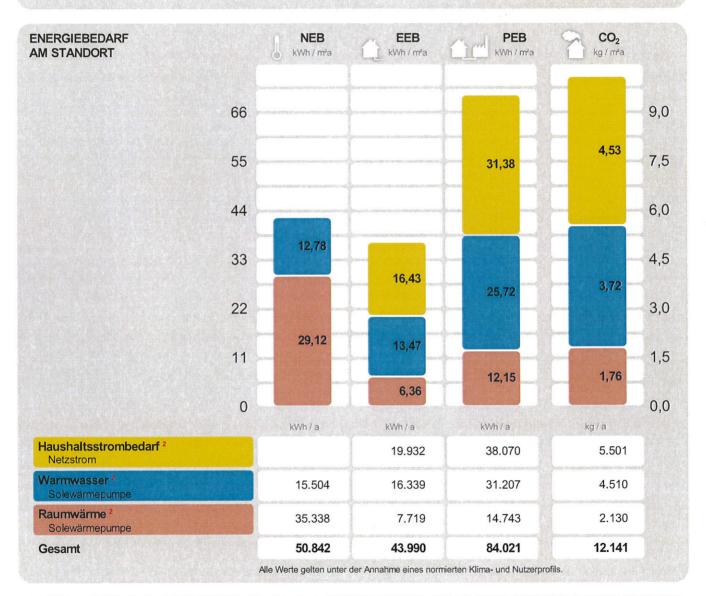
f_{GEE}: Der **Gesamtenergieeffizienz-Faktor** ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf (Anforderung 2007).

EAW-Schlüssel: 1K3CYPAL

Alle Werte gelten unter der Annahme eines normierten Klima- und Nutzerprofils. Sie geben den rechnerischen Jahresbedarf je Quadratmeter beheizter Brutto-Grundfläche am Gebäudestandort an.

Energieausweis für Wohngebäude Nr. 84743-1 OIB OSTERREICHISCHES

0.42 m⁻¹



20 °C

GEBÄUDEKENNDATE	:N				
Brutto-Grundfläche	1.213,4 m²	charakteristische Länge	2,39 m	mittlerer U-Wert	0,31 W/m²K
Bezugsfläche	970,7 m²	Heiztage	197 d	LEK _T Wert	21,48
Brutto-Volumen	3.778,9 m³	Heizgradtage 12/20	3.472 Kd	Art der Lüftung	Fensterlüftung
Gebäude-Hüllfläche	1.579,93 m²	Klimaregion	West ¹	Bauweise	mittelschwer

-10,2 °C Soll-Innentemperatur

Norm-Außentemperatur

	ErstellerIn	Wärme-, und Schallschutztechnik - Schwarz Thomas Alte Landstrasse 39		
84743-1				
keine Angabe		6820 Frastanz		
06. 03. 2020	Stempel und	X Y (S)		
06. 03. 2030	Unterschrift			
		Technisches süro Ingenieur büro für Bouphysik		
		6820 Frastanz Alte Landstrasse 39 fol.: 05522/52958-0 Fax:: 05622/52958-4		
10	eine Angabe 06. 03. 2020	eine Angabe 06. 03. 2020 Stempel und		

Kompaktheit AV

^{*} manum beeinflusster vvesten

2 Die spezifischen & absoluten Ergebnisse in kWh/m²a bzw. kWh/a auf Ebene von EEB, PEB und CO₂ beinhalten jeweils die Hilfsenergie. Etwaige vor Ort erzeugten Erträge aus einer thermischen

Solaranlage und/oder einer Photovoltaikanlage (PV) sind berücksichtigt. Für den Warmwasserwärme- und den Haushaltsstrombedarf werden standardisierte Normbedarfswerte herangezogen.

Es werden nur Bereitstellungssysteme angezeigt, welche einen nennenswerten Beitrag beisteuern. Können aus Platzgründen nicht alle Bereitstellungssysteme dargestellt werden, so wird dies durch "u.A." (und Andere) kenntlich gemacht. Weitere Details sind dem technischen Anhang zu entnehmen.

Energieausweis für Wohngebäude OIB OSTERRECHISCHES Nr. 84743-1

ERGÄNZENDE INFORMATIONEN / VERZEICHNIS

KENNZAHLEN FÜR DIE AUSWEISUNG IN INSERATEN

Anlass für die Erstellung	Neubau	Der Anlass für die Erstellung bestimmt die Anforderung welche für ein etwaiges baurechtliches Verfahren einzuhalten sind.
Rechtsgrundlage	BTV LGBI Nr. 93/2016 & BEV LGBI Nr. 92/2016 (ab 1.1.2017)	Die Bautechnikverordnung LGBI Nr. 93/2016 sowie die Baueingabeverordnung LGBI Nr 92/2016 verweisen bzgl. der energie- und klimapolitischen Vorgaben in weiten Teilen auf die OIB Richtlinie 6 (Ausgabe März 2015).
Umsetzungsstand	Planung	Kennzeichnet den Stand der Umsetzung eines Gebäudes zum Zeitpunkt der Ausstellung des Energieausweises.
Hintergrund der Ausstellung	Baurechtliches Verfahren, Verkauf/Vermietung (Inbestandgabe), Aushangpflicht, andere Gründe	Auswahlmöglichkeiten: Baurechtliches Verfahren, Verkauf/Vermietung (In-Bestand-Gabe), Aushangpflicht, Sanierungsberatung, Förderung, andere Gründe
Berechnungs- grundlagen		

gewährleisten insbesondere im Falle eines Bauverfahrens einen eindeutigen Bezug zu einem definierten Planstand.

Weitere Informationen zu kostenoptimalem Bauen finden Sie unter www.vorarlberg.at/energie

GEBÄUDE- BZW.	GEBÄUDETEIL DER MIT DEM ENERGIEAU	JSWEIS ABGEBILDET WIRD
Baukörper	Alleinstehender Baukörper	Auswahlmöglichkeiten: Alleinstehender Baukörper, zonierter Bereich des Gesamtgebäudes, Zubau an bestehenden Baukörper
Beschreibung des Gebäude(teils)		
Genaude(tells)	Ausführliche Beschreibung des berechneten Gebäude	es bzwteiles in Ergänzung zur Kurzbeschreibung auf Seite 1 des Energieausweises.
Allgemeine Hinweise		
Tilliweise		Wesentliche Hinweise zum Energieausweis.
GESAMTES GEBA	ÄUDE	
Beschreibung	Wohnbebauung Russareal, Lochau - Haus	3
		Beschreibung des gesamten Gebäudes (inklusiver der nicht berechneten Teile).
Nutzeinheiten	11	Anzahl der Nutzeinheiten im gesamten Gebäude.
Obergeschosse	4	Anzahl jener Geschosse im gesamten Gebäude, bei welchen der Großteil über dem Geländeniveau liegt.
Untergeschosse	1	Anzahl jener Geschosse im gesamten Gebäude, bei welchen der Großteil der Brutto-Grundfläche unter dem Geländeniveau liegt.

HWB	29,1 kWh/m²a (B)	Der spezifische Heizwärmebedarf (HWB) und der Faktor für die Gesamt- energieeffizienz (fGEE) sind laut dem Energieausweisvorlage Gesetz 2012 bei In-
f_{GEE}	0,81 (A)	Bestand-Gabe (Verkauf und Vermietung) verpflichtend in Inseraten anzugeben. Die Kennzahlen beziehen sich auf das Standortklima.
KENNZAHLEN FÜ	R DIVERSE FÖRDERANSUCHEN	
HWB _{RK}	28,3 kWh/(m²a)	Heizwärmebedarf an einem fiktiven Referenzstandort (RK Referenzklima).
$HWB_{Ref.,RK}$	28,3 kWh/(m²a)	Referenz-Heizwärmebedarf (Ref.) an einem fiktiven Referenzstandort (RK Referenzklima). Dieser Wert ist u.a. für KPC Förderungen relevant.
$HWB_{SK}\left(Q_{h,a,SK}\right)$	35.338,0 kWh/a	Jährlicher Heizwärmebedarf am Gebäudestandort (SK Standortklima). Dieser Wert ist u.a. für KPC Förderungen relevant.
HWB _{Ref.,SK}	29,1 kWh/(m²a)	Referenz-Heizwärmebedarf (Ref.) am Gebäudestandort (SK Standortklima). Dieser Wert wird u.a. für die Energieförderung und die Wohnbauförderung in Vorarlberg benötigt.
PEB _{SK}	69,2 kWh/(m²a)	Primärenergiebedarf am Gebäudestandort (SK Standortklima). Etwaige Erträge aus Photovoltaikanlagen werden berücksichtigt. Dieser Wert ist u.a. für die Wohnbauförderung in Vorarlberg relevant.
CO _{2 SK}	10,0 kg/(m²a)	Kohlendioxidemissionen am Gebäudestandort (SK Standortklima). Etwaige Erträge aus Photovoltaikanlagen werden berücksichtigt. Dieser Wert ist u.a. für die Wohnbauförderung in Vorarlberg relevant.
Ol3	– Punkte	Ökoindikator des Gebäudes (Bilanzgrenze 0) bezogen auf die konditionierte Bruttogrundfläche (Ol3BG0,BGF). Dieser Wert ist u.a. für die Wohnbauförderung in Vorarlberg relevant.

Energieausweis für Wohngebäude OIB OSTERREICHISCHES Nr. 84743-1

Leistung PV

 $0,0 \text{ kW}_p$

Die Peakleistung (Ppk) einer Photovoltaikanlage wird bei Normprüfbedingungen entsprechend der Definition gemäß ÖNORM H 5056 Kap. 11.2 (2014) ermittelt. Dieser Wert ist u.a. für die Wohnbauförderung in Vorarlberg relevant.

Daten des Energieausweis-Erstellers für die einfache Kontaktaufnahme.

ENERGIEAUSWEIS-ERSTELLER

Kontaktdaten

Thomas Schwarz

Wärme-, und Schallschutztechnik -

Schwarz Thomas Alte Landstrasse 39

6820 Frastanz

Telefon: +43 (0)5522 / 52953 E-Mail: office.wss@aon.at

Berechnungsprogramm GEQ, Version 2020.031305

Berechnungsprogramm- und version mit dem der Energieausweis erstellt wurde.

VERZEICHNIS

1.1 - 1.4 **Seiten 1 und 2**

Ergänzende Informationen / Verzeichnis

2.1 - 2.2 Anforderungen Baurecht

3.1 - 3.6 Bauteilaufbauten

Anhänge zum EAW:

A.1 - A.31 A. Russareal, Lochau - Haus 3

Alle Teile des Energieausweises sind über die Landesplattform zum Energieausweis einsehbar: https://www.eawz.at/?eaw=84743-1&c=c6892159

Energieausweis für Wohngebäude Nr. 84743-1

2. ANFORDERUNGEN BAURECHT

ZUSAMMENFASSUNG

Anlass für die Erstellung

Neubau

Rechtsgrundlage BTV LGBI Nr. 93/2016 & BEV LGBI Nr.

92/2016 (ab 1.1.2017)

Die Bautechnikverordnung LGBI Nr. 93/2016 sowie die Baueingabeverordnung LGBI Nr. 92/2016 verweisen bzgl. der energie- und klimapolitischen Vorgaben in weiten Teilen auf die OIB Richtlinie 6 (Ausgabe März 2015).

Hintergrund der Ausstellung

Baurechtliches Verfahren, Verkauf/Vermietung (Inbestandgabe), Aushangpflicht, andere Gründe

Sämtliche Anforderungen zum Thema Energieeinsparung & Wärmeschutz

alle Anforderungen durch allgemein bekannte Lösungen erfüllt

Sämtliche Anforderungen der OIB-RL 6 bzw. der baurechtlichen Anforderungen in Vorarlberg zum Thema "Energieeinsparung und Wärmeschutz" sind durch Anwendung von praxisbewährten Lösungen erfüllt. Eine detaillierte Plausibilitätsprüfung im Rahmen des Bauverfahrens ist i.d.R. nicht notwendig.

ANFORDERUNGEN

Wärmeübertragende Bauteile

vollständig erfüllt

Die Anforderungen an wärmeübertragende Bauteile gemäß (OIB-RL6 Ausgabe März 2015, Pkt. 4.4 BEV §1 Abs.(3) lit. c & d sowie der BTV §41a ist im Zuge der Ausführung vom Bauherrn oder einem befähigten Vertreter zu beachten bzw. zu erfüllen. Detaillierte Informationen zu den Bauteilen finden Sie im Abschnitt "Bauteilaufbauten"

	Soll	Ist		Anforderungen
HWB _{Ref, SK}	31,6 kWh/m²a	29,1	kWh/m²a	erfüllt
PEB _{SK}	165,0 kWh/(m²a)	69,2	kWh/(m²a)	erfüllt
CO _{2 SK}	24,0 kg/(m²a)	10,0	kg/(m²a)	erfüllt

Die Anforderung an den Heizwärmebedarf bei Neubau von Wohngebäuden gemäß BTV §41 Abs.(3) &Abs.(7) wurde rechnerisch nachgewiesen.

Die Anforderung an den Primärenergiebedarf bei Neubau von Wohngebäuden gemäß BTV §41 Abs.(3) & Abs.(7) wurde rechnerisch nachgewiesen.

Die Anforderung an die Kohlendioxidemissionen bei Neubau von Wohngebäuden gemäß BTV §41 Abs.(3) & Abs.(7) wurde rechnerisch nachgewiesen.

ANFORDERUNGEN AN DAS GEBÄUDETECHNISCHE SYSTEM

Anforderung erneuerbarer Anteil

erfüllt (Wärmebedarf min. zu 50% durch WP gedeckt)

Die Anforderung der OIB RL 6 (Ausgabe März 2015), Punkt 4.3, Abs.a ist erfüllt. Der erforderliche Wärmebedarf für Raumheizung und Warmwasser wird mindestens zu 50% durch eine Wärmepumpe unter Einhaltung der Anforderungen an den hierfür geltenden maximal zulässigen Heizenergiebedarf

Sommerlicher Wärmeschutz

erfüllt (Nachweis 8110-3 geführt)

Der EAW-Ersteller bestätigt auf Basis der Berechnung nach ÖNORM B 8110-3 die Einhaltung des "Sommerlichen Wärmeschutzes" (OIB-RL 6, Ausgabe März 2015, Punkt 4.8). Die Berechnung liegt im Anhang bei

Anforderung elektr. Direkt-Widerstandsheizung

erfüllt / ist zu erfüllen

Die Anforderung gemäß BTV §41 Abs.(10) ist zu beachten bzw. zu erfüllen.

Anforderung Wärmerückgewinnung

erfüllt (keine raumlufttechn. Anlage vorgesehen / vorhanden)

In dem betrachteten Gebäude/-teil ist keine raumlufttechnische "Zu- und Abluftanlage" vorgesehen / vorhanden. Damit ist die Anforderung der OIB-RL 6 (Ausgabe März 2015), Punkt 5.1 "Wärmerückgewinnung" erfüllt.

Hocheffiziente alternative Energiesysteme

Wärmepumpensystem (JAZgesamt ≥ 3)

Die Anforderungen gemäß BTV §41 Abs.11 und der OIB RL 6 (Ausgabe März 2015), Punkt 5.2.2, lit d sind erfüllt, da zur Energieerzeugung eine Wärmepumpe (Jahresarbeitszahl >= 3) eingesetzt wird.

Anforderung zentrale Wärmebereitstellung

erfüllt (vorhanden)

Die Anforderung der OIB-RL 6 (Ausgabe März 2015), Punkt 5.3 "Zentrale Wärmebereitstellungsanlage" ist erfüllt, da eine zentrale Wärmebereitstellungsanlage vorhanden ist.

Anforderung Wärmeverteilung erfüllt / ist zu erfüllen

Die Anforderung der OIB-RL 6 (Ausgabe März 2015), Punkt 5.4 "Wärmeverteilung" ist zu erfüllen. Sie gilt bei Neubau/ wesentlicher Änderung der Verwendung jeweils für die gesamte betroffene Anlage.

Alle Dokumente und rechtlichen Grundlagen, auf die in diesem Energieausweis verwiesen wird, finden Sie hier: http://www.eawz.at/RG_ab2013

Energieausweis für Wohngebäude OIB OSTERBECHISCHES Nr. 84743-1

2. ANFORDERUNGEN BAURECHT

WEITERE ANFORDERUNGEN

Kondensation an der inneren BT-Oberfläche bzw. im Inneren von BT

Luft- & Winddichtheit

o i -Oberliacrie

Die Erfüllung der Anforderung gemäß OIB-RL 6 (Ausgabe März 2015), Punkt 4.7 "Kondensation an der inneren Bauteiloberfläche bzw. im Inneren von Bauteilen" ist primär von der Planungs- und Umsetzungsqualität abhängig.

ist einzuhalten

ist einzuhalten

Die Erfüllung der Anforderung gemäß OIB-RL 6 (Ausgabe März 2015), Punkt 4.9 "Luft- und Winddichtheit" ist primär von der Planungs- und Umsetzungsqualität abhängig. Der EAW-Ersteller ist angehalten einen realistisch erreichbaren Luftdichtigkeitswert in der Berechnung anzunehmen.

Alle Dokumente und rechtlichen Grundlagen, auf die in diesem Energieausweis verwiesen wird, finden Sie hier: http://www.eawz.at/RG_ab2013

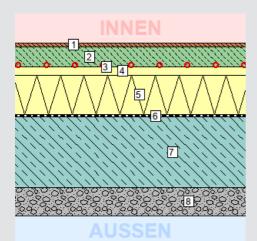
Energieausweis für Wohngebäude OIB OSTERBELCHISCHES Nr. 84743-1

Zustand:

Zustand:

neu

3. BAUTEILAUFBAUTEN - OPAKE BAUTEILE, SEITE 1/5


AUSSENWAND ALLGEMEIN

			neu
Schicht	d	λ	R
von konditioniert (beheizt) – unkonditioniert (unbeheizt)	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,13
1. Gipskartonplatte	1,25	0,250	0,05
2. Gipskartonplatte	1,25	0,250	0,05
3. Inhomogen	5,00		
92 % Mineralwolle	5,00	0,040	1,25
8 % Installationslattung	5,00	0,120	0,42
4. OSB-Platten (Stösse verklebt)	1,80	0,130	0,14
5. Inhomogen	24,00		
84 % Mineralwolle	24,00	0,040	6,00
16 % Holzsteg	24,00	0,120	2,00
6. DWD-Platte	1,60	0,110	0,15
7. Windpapier (zB: Tyvek udgl.)	0,02	0,220	0,00
8. Hinterlüftung inkl. Unterkonstruktion	3,00	*1	*1
9. Fassadenverkleidung	5,00	*1	*1
R _{se} (Wärmeübergangswiderstand außen)			0,13
Gesamt			6,49
Bauteildicke gesamt / wärmetechnisch relevant	42,92 / 34	,92	

	U Bauteil
Wert:	0,15 W/m ² K
Anforderung:	max. 0,30 W/m ² K
Erfüllung:	erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. 0,30 $\rm W/m^2K$).

FUSSBODEN ERDBERÜHREND BÖDEN erdberührt

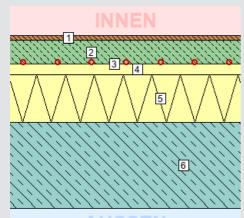
d	λ	R
cm	W/mK	m²K/W
		0,17
1,50	0,150	0,10
7,00	1,580	0,04
0,02	0,350	0,00
3,00	0,033	0,91
14,00	0,038	3,68
0,80	0,230	0,03
25,00	2,500	0,10
10,00	*1	*1
		0,00
		5,05
61,32 / 51	,32	
	1,50 7,00 0,02 3,00 14,00 0,80 25,00	cm W/mK 1,50 0,150 7,00 1,580 0,02 0,350 3,00 0,033 14,00 0,038 0,80 0,230 25,00 2,500

Bauteilfläche: 84,3 m² (5,3%)

	U Bauteil
Wert:	0,20 W/m ² K
Anforderung:	max. 0,40 W/m ² K
Erfüllung:	erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. $0,40 \, \text{W/m}^2\text{K}$).

Energieausweis für Wohngebäude OIB OSTERBECHISCHES Nr. 84743-1



Zustand:

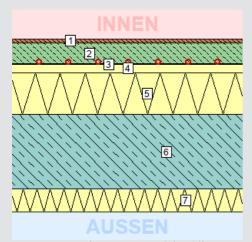
Zustand:

3. BAUTEILAUFBAUTEN - OPAKE BAUTEILE, SEITE 2/5

FUSSBODEN ZUM KELLERDECKEN gegen unbeheizte Gebäudeteile

			neu
Schicht	d	λ	R
von konditioniert (beheizt) – unkonditioniert (unbeheizt)	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,17
1. Bodenbelag	1,50	0,150	0,10
2. Zementestrich	7,00	1,580	0,04
3. Dampfsperre (Vap 2000 o. glw.)	0,02	0,350	0,00
4. Trittschalldämmung (zB: Isover TDPT o. glw.)	3,00	0,033	0,91
5. Wärmedämmung EPS-W 20	14,00	0,038	3,68
6. Stahlbeton	25,00	2,300	0,11
R _{se} (Wärmeübergangswiderstand außen)			0,17
Gesamt	50,52		5,18

AUSSEN


Bauteilfläche: 109,3 m² (6,9%)

	U Bautell
Wert:	0,19 W/m ² K
Anforderung:	max. 0,40 W/m ² K
Erfüllung:	erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. 0,40 $\rm W/m^2K$).

FUSSBODEN ZUR TIEFGARAGE

DECKEN gegen Garagen

			neu
Schicht	d	λ	R
von konditioniert (beheizt) – unkonditioniert (unbeheizt)	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,17
1. Bodenbelag	1,50	0,150	0,10
2. Zementestrich	7,00	1,580	0,04
3. Dampfsperre (Vap 2000 o. glw.)	0,02	0,350	0,00
4. Trittschalldämmung (zB: Isover TDPT o. glw.)	3,00	0,033	0,91
5. Wärmedämmung EPS-W 20	14,00	0,038	3,68
6. Stahlbeton	25,00	2,300	0,11
7. Tektalan-SD	7,50	0,053	1,42
R _{se} (Wärmeübergangswiderstand außen)			0,17
Gesamt	58,02		6,62

Bauteilfläche: 60,5 m² (3,8%)

	U Bauteil
Wert:	0,15 W/m ² K
Anforderung:	max. 0,30 W/m ² K
Erfüllung:	erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. $0,30 \, \text{W/m}^2\text{K}$).

*1 nicht U-relevant

Energieausweis für Wohngebäude OIB OSTERBECHISCHES Nr. 84743-1

Zustand:

3. BAUTEILAUFBAUTEN - OPAKE BAUTEILE, SEITE 3/5

FUSSBODEN ZUM FAHRRADRAUM DECKEN gegen unbeheizte Gebäudeteile

			neu
Schicht	d	λ	R
von konditioniert (beheizt) – unkonditioniert (unbeheizt)	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,17
1. Bodenbelag	1,50	0,150	0,10
2. Zementestrich	7,00	1,580	0,04
3. Dampfsperre (Vap 2000 o. glw.)	0,02	0,350	0,00
4. Trittschalldämmung (zB: Isover TDPT o. glw.)	3,00	0,033	0,91
5. Wärmedämmung EPS-W 20	8,00	0,038	2,11
6. Stahlbeton	22,00	2,300	0,10
7. Tektalan-SD	10,00	0,053	1,89
R _{se} (Wärmeübergangswiderstand außen)			0,17
Gesamt	51,52		5,49

Bauteilfläche: 37,9 m² (2,4%)

U Bauteil

	O Buuton
Wert:	0,18 W/m ² K
Anforderung:	max. 0,40 W/m ² K
Erfüllung:	erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. 0,40 $\rm W/m^2K$).

FUSSBODEN GEGEN AUSSEN
DECKEN über Außenluft (z.B. über Durchfahrten, Parkdecks)

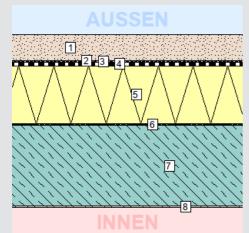
INNEN
2 3 4 9 9 9
<u>©</u> 10

Bauteilfläche: 27,7 m² (1,8%)

d	λ	R
cm	W/mK	m²K/W
		0,17
1,50	0,150	0,10
7,00	1,580	0,04
0,02	0,350	0,00
3,00	0,033	0,91
5,00	0,038	1,32
18,00	2,300	0,08
6,00		
6,00	0,040	1,50
6,00	0,120	0,50
6,00		
6,00	0,040	1,50
6,00	0,120	0,50
0,02	0,220	0,00
3,00	*1	*1
5,00	*1	*1
		0,04
		5,29
54,54 / 46	,54	
	1,50 7,00 0,02 3,00 5,00 18,00 6,00 6,00 6,00 6,00 6,00 6,00 0,02 3,00 5,00	cm W/mK 1,50 0,150 7,00 1,580 0,02 0,350 3,00 0,033 5,00 0,038 18,00 2,300 6,00 6,00 0,040 6,00 0,120 6,00 0,120 0,02 0,220 3,00 *7

Wert:0,19 W/m²KAnforderung:max. 0,20 W/m²KErfüllung:erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. 0,20 W/m²K).

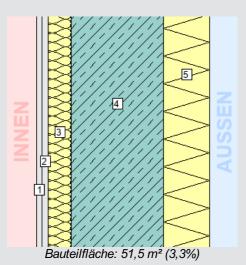

Energieausweis für Wohngebäude Nr. 84743-1

3. BAUTEILAUFBAUTEN - OPAKE BAUTEILE, SEITE 4/5

FLACHDACH ALLGEMEIN Zustand: neu

DECKEN und DACHSCHRÄGEN jeweils gegen Außenluft und gegen Dachräume (durchlüftet oder ungedämmt)

Schicht	d	λ	R
von unkonditioniert (unbeheizt) – konditioniert (beheizt)	cm	W/mK	m²K/W
R _{se} (Wärmeübergangswiderstand außen)			0,04
Extensiver Dachaufbau	12,00	*1	*1
2. Trennvlies	0,02	0,220	0,00
3. Elastomerbitumen-Wurzelschutzbahnen	0,60	0,170	0,04
4. Polymerbitumen-Dichtungsbahn (2-lagig)	1,50	0,230	0,07
5. Polystyrol EPS 20	26,00	0,038	6,84
6. Dampfsperre (Alu-Bitumen)	0,80	0,230	0,03
7. Stahlbeton (im Gefälle)	36,00	2,300	0,16
8. Spachtelputz	0,50	0,830	0,01
R _{si} (Wärmeübergangswiderstand innen)			0,10
Gesamt			7,30
Bauteildicke gesamt / wärmetechnisch relevant	77,42 / 65	,42	


Bauteilfläche: 318,7 m² (20,2%)

U Bauteil Wert: 0,14 W/m²K Anforderung: max. 0,20 W/m2K Erfüllung: erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. 0,20 W/m2K).

TRENNWAND ZUM FAHRRADRAUM

WÄNDE gegen unbeheizte, frostfrei zu haltende Gebäudeteile (ausgenommen Dachräume) und Garagen

Schicht	d	λ	R
von konditioniert (beheizt) – unkonditioniert (unbeheizt)	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,13
1. Gipskartonplatte	1,25	0,250	0,05
2. Gipskartonplatte	1,25	0,250	0,05
3. Glaswolle / Metallunterkonstruktion	5,00	0,040	1,25
4. Stahlbeton	20,00	2,300	0,09
5. Tektalan-SD	10,00	0,053	1,89
R _{se} (Wärmeübergangswiderstand außen)			0,13
Gesamt	37,50		3,58

U Bauteil Wert: 0.28 W/m²K Anforderung: max. 0,60 W/m²K

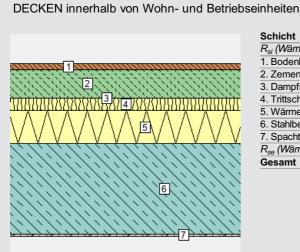
erfüllt

Erfüllung:

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. 0,60 W/m2K).

Zustand:

neu


Energieausweis für Wohngebäude OIB OSTERBELGUISCHES Nr. 84743-1

Zustand:

neu

3. BAUTEILAUFBAUTEN - OPAKE BAUTEILE, SEITE 5/5

WARME ZWISCHENDECKE

	d	λ	R
Schicht	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,13
1. Bodenbelag	1,50	0,150	0,10
2. Zementestrich	7,00	1,580	0,04
3. Dampfsperre (Vap 2000 o. glw.)	0,02	0,350	0,00
4. Trittschalldämmung (zB: Isover TDPT o. glw.)	3,00	0,033	0,91
5. Wärmedämmung EPS-W 20	8,00	0,038	2,11
6. Stahlbeton	22,00	2,300	0,10
7. Spachtelputz	0,50	0,830	0,01
R _{se} (Wärmeübergangswiderstand außen)			0,13
Gesamt	42,02		3,52

Bauteilfläche: 0,0 m² (0,0%)

	U Bauteil
Wert:	0,28 W/m ² K
Anforderung:	keine
Erfüllung:	-

Für diesen Bauteiltyp gibt es keine Anforderungen in der BTV §41a (LGBI. 93/2016). Bei diesem Bauteil erfolgt keine Kennzeichnung der Innen-/Außenseite, da entsprechend der 4K-Regel (Leitfaden zur OIB RL6) in diesem Bauteil kein zu berücksichtigender Wärmefluss stattfindet.

3. BAUTEILAUFBAUTEN - TÜREN, SEITE 1/1

TÜREN	unver	glast, gegen Außenluft			
FI	äche		U		
A	2	5 4 11			
Anz.	m²	Bauteil	W/m²K	U-Wert-Anfdg	Zustand
Anz. 1		Eingangstür		U-Wert-Antag erfüllt ¹	Zustand neu

¹ Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a LGBl. 93/2016, max. 1,70W/m²K).

Energieausweis für Wohngebäude Nr. 84743-1

3. BAUTEILAUFBAUTEN - TRANSPARENTE BAUTEILE, SEITE 1/1

TRANSPARENTE	BAUTE	ILE gegen Außen	luft					
Zustand:			neu					
Rahmen: DIE VEN IV78 Fichte Uf 1,1		ACHER Holzrahmen	U _f = 1,12 W/m²K					
Verglasung: Gaulh	$U_{q} = 0.70 \text{ W/m}^{2}\text{K}$							
Ug=0,7 4/12/4/12/4	4 Ar		g = 0,51					
Linearer Wärmebr	ückenkoe	effizient	psi = 0,040 W/mK					
U _w bei Normfenste Anfdg. an U _w It. BT		16 §41a:	0,93 W/m²K max. 1,40 W/m²K erfüllt					
Heizkörper:			nein					
Gesamtfläche:			258,59 m ²					
Anteil an Außenwa	ınd: 1		27,5 %					
Anteil an Hüllfläche	e: ²		16,4 %					
	t are o-v	Vert-Anforderung fü	ır neubauleri (II. 6) v					
93/2016 §41a, ma		,						
Anz.	U _w ³	Bezeichnung						
•	U _w ³	Bezeichnung 1,27 x 2,40 *						
Anz. 2	U _w ³ 0,90 0,92	Bezeichnung						
Anz. 2 4	U _w ³ 0,90 0,92 0,91	Bezeichnung 1,27 x 2,40 * 1,83 x 2,40						
Anz. 2 4 1	U _w ³ 0,90 0,92 0,91 0,85	Bezeichnung 1,27 x 2,40 * 1,83 x 2,40 1,17 x 2,40						
Anz. 2 4 1 8	U _w ³ 0,90 0,92 0,91 0,85 0,86	Bezeichnung 1,27 x 2,40 * 1,83 x 2,40 1,17 x 2,40 3,49 x 2,40						
Anz. 2 4 1 8 8	U _w ³ 0,90 0,92 0,91 0,85 0,86 0,95	Bezeichnung 1,27 x 2,40 * 1,83 x 2,40 1,17 x 2,40 3,49 x 2,40 3,18 x 2,40						
Anz. 2 4 1 8 8 25	U _w ³ 0,90 0,92 0,91 0,85 0,86 0,95 0,84	Bezeichnung 1,27 x 2,40 * 1,83 x 2,40 1,17 x 2,40 3,49 x 2,40 3,18 x 2,40 1,83 x 1,63						

DACHFLÄCHENFENSTER und sonstige transparente Bauteile horizontal oder in Schrägen gegen Außenluft

Zustand:		neu
Rahmen: Kunststoff-Alu- Stockrahmentiefe < 88	Rahmen <=71	U _f = 1,40 W/m²K
Verglasung: Zweifach-W	ärmeschutzglas Argon	$U_g = 1,15 \text{ W/m}^2\text{K}$
Stärke >= 24mm		g = 0.58
Linearer Wärmebrückenl	koeffizient	psi = 0,040 W/mK
U _w bei Normfenstergröße	э:	1,33 W/m²K
Anfdg. an U _w It. BTV 93/2	2016 §41a:	max. 1,70 W/m²K
Heizkörper:		nein
Gesamtfläche:		1 m ²
Anteil an Hüllfläche: 2		0,1 %
Das Bauteil erfüllt die U	J-Wert-Anforderung für	Neubauten (It. BTV
93/2016 §41a, max. 1,7	70W/m²K).	·
Anz. U _v	³ Bezeichnung	
1 1,3	8 1,25 x 0,80 DF	

Anteil transparenter Bauteile (Fenster, Fenstertüren, etc.) an der gesamten vertikalen Bauteilfläche mit Wärmefluss.
 Anteil transparenter Bauteile (Fenster, Fenstertüren, etc.) an der gesamten konditionierten Gebäudehülle.
 U., in W/m²K auf Grundlage der ieweiligen Fensterabmessungen

Heizlast Abschätzung

Fussboden zum Fahrradraum

Wohnbebauung Russareal, Lochau - Haus 3

Abschätzung der Gebäude-Heizlast auf Basis der Energieausweis-Berechnung

Berechnungsblatt

Bauherr		Baumeist	er / Baufirm	a / Baut	räger / Pla	ner				
L1 Immobilien GmbH & Co OG		Hermann	Hermann Kaufmann + Partner ZT GmbH							
Gutenbergstrasse 1		Sportplatz	weg 5							
6858 Schwarzach		6858 Sch	warzach							
Tel.:		Tel.: 0557	2/58174							
Norm-Außentemperatur:	-10,2 °C	Standort:	Lochau							
Berechnungs-Raumtemperatur:	20 °C	Brutto-Rau	ıminhalt der							
Temperatur-Differenz:	30,2 K	beheizten	Gebäudeteil	e:	3.778,88	m³				
		Gebäudeh	ıüllfläche:		1.579,93 m ²					
Bauteile		Fläche	Wärmed koeffizient	Korr faktor	Korr faktor	Leitwert				
		A [m²]	U [W/m² K]	[1]	ffh [1]	[W/K]				
AW01 Aussenwand allgemein		627,99	0,154	1,00		96,89				
DD01 Fussboden gegen Aussen		27,66	0,189	1,00	1,50	7,81				
FD01 Flachdach allgemein		318,74	0,137	1,00		43,78				
FE/TÜ Fenster u. Türen		261,92	0,898			235,23				
EB01 Fussboden erdberührend		84,32	0,198	0,70	1,50	17,52				
KD01 Fussboden zum Keller		109,34	0,193	0,70	1,50	22,09				
ID01 Fussboden zur Tiefgarage		60,50	0,151	0,80	1,50	10,97				

37,92

0,182

0,70

1,50

7,25

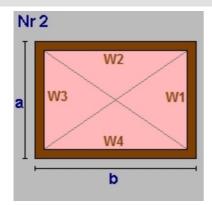
		•			
IW01	Trennwand zum Fahrradraum	51,54	0,279	0,70	10,07
	Summe OBEN-Bauteile	319,74			
	Summe UNTEN-Bauteile	319,74			
	Summe Außenwandflächen	627,99			
	Summe Innenwandflächen	51,54			
	Fensteranteil in Außenwänden 29,4 %	260,92			
	Fenster in Deckenflächen	1,00			
Sum	me			[W/K]	452
Wärr	mebrücken (vereinfacht)			[W/K]	45
Tran	smissions - Leitwert L _T			[W/K]	496,76
Lüftı	ungs - Leitwert L _V			[W/K]	343,24
Geb	äude-Heizlast Abschätzung	Luftwechsel =	0,40 1/h	[kW]	25,4
Fläc	henbez. Heizlast Abschätzung (1	1.213 m²)	[W	/m² BGF]	20,91

Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers. Für die exakte Dimensionierung ist eine Heizlast-Berechnung nach ÖNORM H 7500 erforderlich.

Bauteile Wohnbebauung Russareal, Lochau - Haus 3

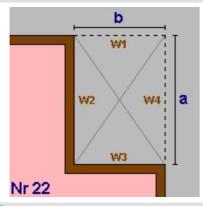
AW01 Auss	enwand allgemein			von Innon	nach Auße	an F	Dicke	λ	d/λ
Gipskartonplatte				von miner	Hach Auße		,0125	0,250	0,050
Gipskartonplatte							,0125	0,250	0,050
Installationslattun	n dazw				8,0 9		,0123	0,230	0,030
Mineralwolle	g duzw.				92,0		,0500	0,040	0,966
OSB-Platten (Stö	sse verkleht)				02,0		,0180	0,130	0,138
Holzsteg dazw.					16,0 9		,	0,120	0,294
Mineralwolle					84,0		,2400	0,040	4,637
DWD-Platte					- ,-		,0160	0,110	0,145
Windpapier (zB:	Гуvek udgl.)			#			,0002	0,220	0,001
Hinterlüftung inkl.	Unterkonstruktion			# 3	*	0,	,0300	0,120	0,250
Fassadenverkleid	lung			# '	ŧ	0,	,0500	0,120	0,417
						Dicke 0,	,3492		
	RTo 6,6944	RTu	6,2679	RT 6,4811		Dicke gesamt 0,	,4292	U-Wert	0,15
Holzsteg:	Achsabstand	0,625	Breite	0,100 Dicke	0,240	Rse+R	Rsi 0,	26	
Installationsl:	Achsabstand	0,625	Breite	0,050 Dicke	0,050				
EB01 Fuss	boden erdberührend						Nieko	2	4/2
Dodonholog					nach Auße		Dicke	λ	d/λ
Bodenbelag Zementestrich				# F			,0150 ,0700	0,150 1,580	0,100 0,044
Dampfsperre (Va	n 2000 o . alw)			г #			,0700	0,350	0,044
	p 2000 o. giw.) ng (zB: Isover TDPT o. g	lw)		#			,0002	0,330	0,909
Wärmedämmung		100.)					,1400	0,033	3,684
	Iflächig geflämmt)			#			,0080	0,230	0,035
Stahlbeton in WU	,			"			,2500	2,500	0,100
Sauberkeitsschic				# '	*		,1000	0,700	0,143
						Dicke 0		-,	-,
				Rse+Rsi = 0,17	•	Dicke gesamt 0,		U-Wert	0,20
KD01 Fuss	boden zum Keller								
					nach Auße		Dicke	λ	d/λ
Bodenbelag				_ #			,0150	0,150	0,100
Zementestrich	0000)			F "			,0700	1,580	0,044
Dampfsperre (Va		\		#			,0002	0,350	0,001
Wärmedämmung	ng (zB: Isover TDPT o. g	iw.)					,0300 ,1400	0,033	0,909
Stahlbeton	EPS-W 20							0,038	3,684 0,109
Stariibetori				Dag : Dai: 0.24			,2500	2,300	
ID04 Fires	badan - u Tiafaaraa			Rse+Rsi = 0,34	;	Dicke gesamt 0,	,5052	U-Wert	0,19
ID01 Fuss	boden zur Tiefgarage	3		von Innen	nach Auße	en D	Dicke	λ	d/λ
Bodenbelag				#			,0150	0,150	0,100
Zementestrich				F			,0700	1,580	0,044
Dampfsperre (Va	p 2000 o. glw.)			#			,0002	0,350	0,001
	ng (zB: Isover TDPT o. g	lw.)					,0300	0,033	0,909
Wärmedämmung		-					,1400	0,038	3,684
Stahlbeton							,2500	2,300	0,109
Tektalan-SD						0,	,0750	0,053	1,415
				Rse+Rsi = 0.34		Dicke gesamt 0,	,5802	U-Wert	0,15

Bauteile Wohnbebauung Russareal, Lochau - Haus 3

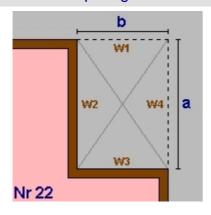

ID02 Fussbode	n zum Fahrradra									
02	d.ii r diii radi d			von	Innen r	nach Auße	n	Dicke	λ	d/λ
Bodenbelag					#			0,0150	0,150	0,100
Zementestrich				F				0,0700	1,580	0,044
Dampfsperre (Vap 200					#			0,0002	0,350	0,001
Trittschalldämmung (zE	•	w.)						0,0300	0,033	0,909
Wärmedämmung EPS-	W 20							0,0800	0,038	2,105
Stahlbeton								0,2200	2,300	0,096
Tektalan-SD								0,1000	0,053	1,887
				Rse+Rsi =	0,34		Dicke gesamt	0,5152	U-Wert	0,18
DD01 Fussbode	n gegen Aussen			von	Innen r	nach Auße	n	Dicke	λ	d/λ
Bodenbelag					#			0,0150	0,150	0,100
Zementestrich				F				0,0700	1,580	0,044
Dampfsperre (Vap 200	O o. alw.)				#			0,0002	0,350	0,001
Trittschalldämmung (zE		w.)						0,0300	0,033	0,909
Wärmedämmung EPS-		,						0,0500	0,038	1,316
Stahlbeton								0,1800	2,300	0,078
Holzlattung dazw.						9,6 9	%		0,120	0,043
Mineralwolle (WLG	040)					90,4 9	%	0,0600	0,040	1,226
Holzlattung dazw.						9,6	%		0,120	0,043
Mineralwolle (WLG	040)					90,4 9	%	0,0600	0,040	1,226
Windpapier (zB: Tyvek					#			0,0002	0,220	0,001
Hinterlüftung inkl. Unter	rkonstruktion				# *			0,0300	0,120	0,250
Fassadenverkleidung					# *			0,0500	0,120	0,417
								0,4654		
	RTo 5,4293		5,1757	RT 5,3			Dicke gesam		U-Wert	0,19
Holzlattung:		0,625		0,060		0,060	Rse	+Rsi 0	,21	
Holzlattung:	Achsabstand	0,625	Breite	0,060 [icke	0,060				
FD01 Flachdach	allgemein			von	Au@on	nach Inne	.n	Dicke	λ	4/3
Fortage in the Death and beauth				VOIT		nach inne	911			d/λ
Extensiver Dachaufbau					# *			0,1200	2,000	0,060
Trennvlies	- alaahut-bahaan				#			0,0002	0,220	0,001
Elastomerbitumen-Wur					# #			0,0060 0,0150	0,170 0,230	0,035 0,065
Polymerbitumen-Dichtu Polystyrol EPS 20	irigsbariir (z-iagig)				#			0,2600	0,230	6,842
Dampfsperre (Alu-Bitur	nen)				#			0,0080	0,030	0,042
Stahlbeton (im Gefälle)	nen)				π			0,3600	2,300	0,055
Spachtelputz								0,0050	0,830	0,006
Opaomoiputz							Dicke	0,6542	0,000	0,000
				Rse+Rsi =	0,14		Dicke gesam		U-Wert	0,14
IW01 Trennwan	d zum Fahrradra	ıum						Distra	2	-1 / 2
Cinal contant latte				von	innen r	nach Auße	n	Dicke	λ	d/λ
Gipskartonplatte								0,0125	0,250	0,050
Gipskartonplatte	construktion							0,0125	0,250	0,050
Glaswolle / Metallunter	KONSTUKTION							0,0500	0,040	1,250
Stanibeton Tektalan-SD								0,2000	2,300	0,087
i ektalali-SD				Rse+Rsi =	0.00		Dicke gesamt	0,1000	0,053	1,887
				KSE+KSI:			rucke desamt	U.3/5U	U-Wert	0,28

Bauteile Wohnbebauung Russareal, Lochau - Haus 3

ZD01	Warme Zwischendecke				
		von Innen nach	Außen Dicke	λ	d/λ
Bodenbe	lag	#	0,0150	0,150	0,100
Zementes	strich		0,0700	1,580	0,044
Dampfsp	erre (Vap 2000 o. glw.)	#	0,0002	0,350	0,001
Trittschal	ldämmung (zB: Isover TDPT o. glw.)		0,0300	0,033	0,909
Wärmedä	ammung EPS-W 20		0,0800	0,038	2,105
Stahlbeto	on		0,2200	2,300	0,096
Spachtelp	putz		0,0050	0,830	0,006
		Rse+Rsi = 0.26	Dicke gesamt 0.4202	U-Wert	0.28


Dicke ... wärmetechnisch relevante Dicke
Einheiten: Dicke [m], Achsabstand [m], Breite [m], U-Wert [W/m²K], Dichte [kg/m³], λ [W/mK]
*... Schicht zählt nicht zum U-Wert #... Schicht zählt nicht zur Ol3-Berechnung
RTu ... unterer Grenzwert RTo ... oberer Grenzwert laut ÖNORM EN ISO 6946

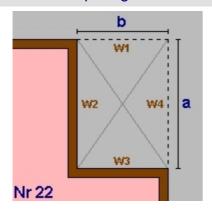
EG Grundform


```
Von EG bis OG3
                b = 13,56
a = 24,30
lichte Raumhöhe = 2,50 + obere Decke: 0,42 => 2,92m
           329,51m² BRI
                              962,23m<sup>3</sup>
            70,96m² AW01 Aussenwand allgemein
Wand W1
Wand W2
            39,60m<sup>2</sup> AW01
            70,96m<sup>2</sup> AW01
Wand W3
           39,60m² AW01
Wand W4
Decke
           329,51m<sup>2</sup> ZD01 Warme Zwischendecke
           184,69m² KD01 Fussboden zum Keller
Boden
Teilung
           84,32m<sup>2</sup> EB01
           60,50m<sup>2</sup> ID01
Teilung
```

EG Rücksprung 1


```
a = 9,90
               b = 3,78
lichte Raumhöhe = 2,50 + obere Decke: 0,47 => 2,97m
          -37,42m² BRI
                           -110,97m<sup>3</sup>
Wand W1
         -11,21m<sup>2</sup> AW01 Aussenwand allgemein
Wand W2
          29,36m² AW01
Wand W3
           11,21m<sup>2</sup> AW01
         -29,36m<sup>2</sup> AW01
Wand W4
Decke
           37,42m² DD01 Fussboden gegen Aussen
Boden
          -37,42m² KD01 Fussboden zum Keller
```

EG Rücksprung 2

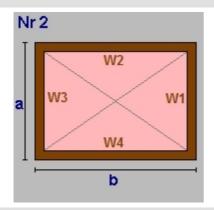



```
a = 9,80
               b = 2,10
lichte Raumhöhe = 2,50 + obere Decke: 0,52 => 3,02m
          -20,58m² BRI
BGF
                             -62,05m<sup>3</sup>
           -6,33m<sup>2</sup> AW01 Aussenwand allgemein
Wand W1
Wand W2
           29,55m<sup>2</sup> IW01 Trennwand zum Fahrradraum
           6,33m<sup>2</sup> IW01
Wand W3
Wand W4 -29,55m<sup>2</sup> AW01 Aussenwand allgemein
Decke
           20,58m² ID02 Fussboden zum Fahrradraum
Boden
          -20,58m2 KD01 Fussboden zum Keller
```

Geometrieausdruck

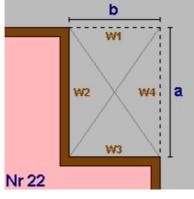
Wohnbebauung Russareal, Lochau - Haus 3

EG Rücksprung 3




```
b = 2,74
a = 6,33
lichte Raumhöhe = 2,50 + obere Decke: 0,52 => 3,02m
          -17,34m² BRI
                           -52,30m<sup>3</sup>
Wand W1
           -8,26m² AW01 Aussenwand allgemein
          19,09m² IW01 Trennwand zum Fahrradraum
Wand W2
            8,26m<sup>2</sup> IW01
Wand W3
         -19,09m<sup>2</sup> IW01
Wand W4
          17,34m² ID02 Fussboden zum Fahrradraum
Decke
Boden
          -17,34m² KD01 Fussboden zum Keller
```

EG Summe

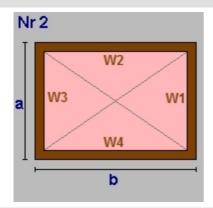

EG Bruttogrundfläche [m²]: 254,16 EG Bruttorauminhalt [m³]: 736,91

OG1 Grundform


```
Von EG bis OG3
a = 24,30
                b = 13,56
lichte Raumhöhe = 2,50 + obere Decke: 0,42 => 2,92m
           329,51m<sup>2</sup> BRI
                             962,23m³
Wand W1
            70,96m<sup>2</sup> AW01 Aussenwand allgemein
            39,60m<sup>2</sup> AW01
Wand W2
Wand W3
            70,96m<sup>2</sup> AW01
            39,60m² AW01
Wand W4
           329,51m<sup>2</sup> ZD01 Warme Zwischendecke
Decke
         -329,51m<sup>2</sup> ZD01 Warme Zwischendecke
Boden
```

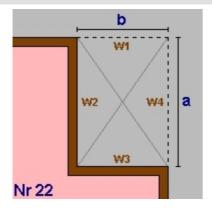
OG1 Rücksprung 1


```
Von OG1 bis OG3
a = 2,57
                b
                       3,80
lichte Raumhöhe = 2,50 + \text{obere Decke}: 0,42 \Rightarrow 2,92m
            -9,77m² BRI
                              -28,52m<sup>3</sup>
          -11,10m<sup>2</sup> AW01 Aussenwand allgemein
Wand W1
            7,50m² AW01
Wand W2
           11,10m<sup>2</sup> AW01
Wand W3
Wand W4
            -7,50m<sup>2</sup> AW01
           -9,77m² ZD01 Warme Zwischendecke
Decke
           -9,77m² DD01 Fussboden gegen Aussen
Boden
```


OG1 Summe

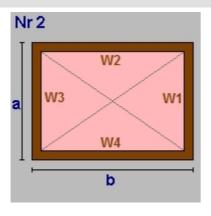
OG1 Bruttogrundfläche [m²]: 319,74 OG1 Bruttorauminhalt [m³]: 933,71

Geometrieausdruck


Wohnbebauung Russareal, Lochau - Haus 3

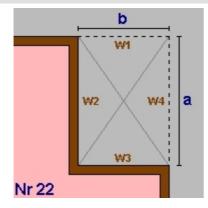
OG2 Grundform


```
Von EG bis OG3
a = 24,30 b = 13,56 lichte Raumhöhe = 2,50 + obere Decke: 0,42 => 2,92m
           329,51m² BRI
                             962,23m³
            70,96m² AW01 Aussenwand allgemein
Wand W1
Wand W2
            39,60m<sup>2</sup> AW01
            70,96m<sup>2</sup> AW01
Wand W3
           39,60m² AW01
Wand W4
Decke
           329,51m<sup>2</sup> ZD01 Warme Zwischendecke
         -329,51m<sup>2</sup> ZD01 Warme Zwischendecke
Boden
```


OG2 Rücksprung 1

OG2 Summe

OG2 Bruttogrundfläche [m²]: 319,74 OG2 Bruttorauminhalt [m³]: 933,71


OG3 Grundform


```
Von EG bis OG3
a = 24,30
                b = 13,56
lichte Raumhöhe = 2,50 + obere Decke: 0,65 => 3,15m
          329,51m<sup>2</sup> BRI 1.039,33m<sup>3</sup>
           76,65m<sup>2</sup> AW01 Aussenwand allgemein
Wand W1
            42,77m<sup>2</sup> AW01
Wand W2
           76,65m² AW01
Wand W3
Wand W4
            42,77m<sup>2</sup> AW01
          329,51m² FD01 Flachdach allgemein
Decke
Boden -329,51m<sup>2</sup> ZD01 Warme Zwischendecke
```

Boden

OG3 Rücksprung 1

Von OG1 bis OG3 $a = 2,57 \qquad b = 3,80 \\ \mbox{lichte Raumhöhe} = 2,50 + obere Decke: 0,65 => 3,15m \\ \mbox{BGF} \qquad -9,77m^2 \mbox{BRI} \qquad -30,80m^3 \\ \mbox{Wand W1} \qquad -11,99m^2 \mbox{ AW01 Aussenwand allgemein} \\ \mbox{Wand W2} \qquad 8,11m^2 \mbox{ AW01} \\ \mbox{Wand W3} \qquad 11,99m^2 \mbox{ AW01} \\ \mbox{Wand W4} \qquad -8,11m^2 \mbox{ AW01} \\ \mbox{Decke} \qquad -9,77m^2 \mbox{ FD01 Flachdach allgemein}$

9,77m² ZD01 Warme Zwischendecke

OG3 Summe

OG3 Bruttogrundfläche [m²]: 319,74 OG3 Bruttorauminhalt [m³]: 1.008,53

Deckenvolumen EB01

Fläche $84,32 \text{ m}^2 \text{ x Dicke } 0,51 \text{ m} = 43,27 \text{ m}^3$

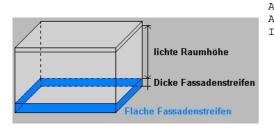
Deckenvolumen KD01

Fläche 109,34 m^2 x Dicke 0,51 $m = 55,24 m^3$

Deckenvolumen DD01

Fläche 27,66 m^2 x Dicke 0,47 $m = 12,87 m^3$

Deckenvolumen ID01


Fläche $60,50 \text{ m}^2 \text{ x Dicke } 0,58 \text{ m} = 35,10 \text{ m}^3$

Deckenvolumen ID02

Fläche 37,92 m^2 x Dicke 0,52 m = 19,54 m^3

Bruttorauminhalt [m³]: 166,02

Fassadenstreifen - Automatische Ermittlung

wana		Boaen	Dicke	Lange	Flache
AW01	_	KD01	0,505m	61,08m	30,86m²
AW01	-	DD01	0,465m	0,00m	0,00m²
IW01	_	KD01	0.505m	14.64m	7.40m²

Geometrieausdruck Wohnbebauung Russareal, Lochau - Haus 3

Gesamtsumme Bruttogeschoßfläche [m²]: 1.213,39 Gesamtsumme Bruttorauminhalt [m³]: 3.778,88

Fenster und Türen Wohnbebauung Russareal, Lochau - Haus 3

Тур		Bauteil	Anz	. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs
			Prüf	normmaß Typ 1 (T1)	1,23	1,48	1,82	0,70	1,12	0,040	1,23	0,93		0,51	
			Prüf	normmaß Typ 2 (T2)	1,23	1,48	1,82	1,15	1,40	0,040	1,23	1,33		0,58	
horiz.											2,46				
T2	OG3	FD01	1	1,25 x 0,80 DF	1,25	0,80	1,00	1,15	1,40	0,040	0,57	1,38	1,38	0,58	0,75
			1				1,00				0,57		1,38		
N															
	EG	AW01	1	Eingangstür	1,00	2,28	2,28					1,10	2,51		
T1	EG	AW01	1	2,36 x 2,40 *	2,36	2,40	5,66	0,70	1,12	0,040	4,58	0,84	4,76	0,51	0,75
T1	OG1	AW01	2	1,83 x 1,63	1,83	1,63	5,97	0,70	1,12	0,040	4,09	0,95	5,64	0,51	0,75
T1	OG2			1,83 x 1,63	1,83	1,63	5,97	0,70	1,12	0,040	4,09	0,95	5,64	0,51	0,75
T1	OG3	AW01		1,83 x 1,63	1,83	1,63	5,97	0,70	1,12	0,040	4,09	0,95	5,64	0,51	0,75
			8				25,85				16,85		24,19		
0	F0	A14/04	0	4.070.40.*	4.07	0.40	0.40	0.70	4.40	0.040	4.45	0.00	F 40	0.54	0.75
T1	EG	AW01		1,27 x 2,40 *	1,27	2,40	6,10	0,70	1,12	0,040	4,45	0,90	5,46	0,51	0,75
T1 T1		AW01 AW01		1,83 x 2,40	1,83	2,40 2,40	4,39	0,70 0,70	1,12	0,040 0,040	3,18	0,92	4,05 2,55	0,51	0,75
T1		AW01		1,17 x 2,40 1,83 x 1,63	1,17	1,63	2,81 2,98	0,70	1,12 1,12	0,040	2,01 2,04	0,91 0,95	2,82		0,75 0,75
T1		AW01		1,17 x 1,63	1,17	1,63	1,91	0,70	1,12	0,040	1,29	0,93	1,78	0,51	0,75
T1		AW01		1,27 x 1,63 *	1,27	1,63	4,14	0,70	1,12	0,040	2,86	0,92	3,82		0,75
T1		AW01		1,17 x 1,63	1,17	1,63	1,91	0,70	1,12	0,040	1,29	0,93	1,78		0,75
T1		AW01		1,83 x 1,63	1,83	1,63	2,98	0,70	1,12	0,040	2,04	0,95	2,82	0,51	0,75
T1	OG2			1,83 x 1,63	1,83	1,63	2,98	0,70	1,12	0,040	2,04	0,95	2,82		0,75
T1	OG2	AW01		1,17 x 1,63	1,17	1,63	3,81	0,70	1,12	0,040	2,59	0,93	3,55	0,51	0,75
T1	OG2	AW01	2	1,27 x 1,63 *	1,27	1,63	4,14	0,70	1,12	0,040	2,86	0,92	3,82	0,51	0,75
T1	OG2	AW01	1	1,83 x 1,63	1,83	1,63	2,98	0,70	1,12	0,040	2,04	0,95	2,82	0,51	0,75
T1	OG3	AW01	1	1,83 x 1,63	1,83	1,63	2,98	0,70	1,12	0,040	2,04	0,95	2,82	0,51	0,75
T1	OG3	AW01	2	1,17 x 1,63	1,17	1,63	3,81	0,70	1,12	0,040	2,59	0,93	3,55	0,51	0,75
T1	OG3	AW01	2	1,27 x 1,63 *	1,27	1,63	4,14	0,70	1,12	0,040	2,86	0,92	3,82	0,51	0,75
T1	OG3	AW01	1	1,83 x 1,63	1,83	1,63	2,98	0,70	1,12	0,040	2,04	0,95	2,82	0,51	0,75
			22				55,04				38,22		51,10		
S															
T1		AW01		1,83 x 2,40	1,83	2,40	8,78	0,70	1,12	0,040	6,35	0,92	8,09		0,75
T1		AW01		1,83 x 1,63	1,83	1,63	5,97	0,70	1,12	0,040	4,09	0,95	5,64	0,51	0,75
T1	OG2			1,83 x 1,63	1,83	1,63	5,97	0,70	1,12	0,040	4,09	0,95		0,51	0,75
T1	OG3	AVVU1		1,83 x 1,63	1,83	1,63	5,97	0,70	1,12	0,040	4,09	0,95	5,64	0,51	0,75
			8				26,69				18,62		25,01		
W T1	EG	AW01	2	3.49 v 2.40	3,49	2,40	16 75	0.70	1,12	0.040	13,52	O 25	1/1 27	0.51	0.75
T1 T1		AW01		3,49 x 2,40 1,83 x 2,40	1,83	2,40	16,75 4,39	0,70 0,70	1,12	0,040 0,040	3,18	0,85 0,92	14,27 4,05	0,51 0,51	0,75 0,75
T1		AW01		3,18 x 2,40	3,18	2,40	4,39 15,26	0,70	1,12	0,040	12,18	0,92	13,11		0,75
T1		AW01		1,83 x 1,63	1,83	1,63	2,98	0,70	1,12	0,040	2,04	0,86	2,82		0,75
T1		AW01		3,18 x 2,40	3,18	2,40	15,26	0,70	1,12	0,040	12,18	0,95	13,11		0,75
T1		AW01		1,83 x 1,63	1,83	1,63	5,97	0,70	1,12	0,040	4,09	0,95	5,64		0,75
		AW01		3,49 x 2,40	3,49	2,40	16,75	0,70	1,12	0,040	13,52	0,85	14,27		

Fenster und Türen

Wohnbebauung Russareal, Lochau - Haus 3

Тур		Bauteil	Anz	. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs
T1	OG2	AW01	1	3,49 x 2,40	3,49	2,40	8,38	0,70	1,12	0,040	6,76	0,85	7,14	0,51	0,75
T1	OG2	AW01	1	1,83 x 1,63	1,83	1,63	2,98	0,70	1,12	0,040	2,04	0,95	2,82	0,51	0,75
T1	OG2	AW01	2	3,18 x 2,40	3,18	2,40	15,26	0,70	1,12	0,040	12,18	0,86	13,11	0,51	0,75
T1	OG2	AW01	1	1,83 x 1,63	1,83	1,63	2,98	0,70	1,12	0,040	2,04	0,95	2,82	0,51	0,75
T1	OG2	AW01	1	3,49 x 2,40	3,49	2,40	8,38	0,70	1,12	0,040	6,76	0,85	7,14	0,51	0,75
T1	OG3	AW01	2	1,83 x 1,63	1,83	1,63	5,97	0,70	1,12	0,040	4,09	0,95	5,64	0,51	0,75
T1	OG3	AW01	2	3,18 x 2,40	3,18	2,40	15,26	0,70	1,12	0,040	12,18	0,86	13,11	0,51	0,75
T1	OG3	AW01	2	3,49 x 2,40	3,49	2,40	16,75	0,70	1,12	0,040	13,52	0,85	14,27	0,51	0,75
			24				153,32				120,28		133,32		
Summe	<u> </u>		63				261 90				194 54		235 00		

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor Typ... Prüfnormmaßtyp

Rahmen Wohnbebauung Russareal, Lochau - Haus 3

Bezeichnung	Rb.re.	Rb.li. m	Rb.o. m	Rb.u. m	%	Stulp Anz.	. Pfost Anz.		 V-Sp. Anz.	Spb.	
Typ 1 (T1)	0,120	0,120	0,120	0,120	33						DIE VENSTERMACHER Holzrahmen IV78 Fichte Uf 1,12
Typ 2 (T2)	0,120	0,120	0,120	0,120	33						Kunststoff-Alu-Rahmen <=71
1,27 x 2,40 *	0,120	0,120	0,120	0,120	27						Stockrahmentiefe < 88 DIE VENSTERMACHER Holzrahmen IV78 Fichte Uf 1,12
1,83 x 2,40	0,120	0,120	0,120	0,120	28		1	0,120			DIE VENSTERMACHER Holzrahmen IV78 Fichte Uf 1,12
1,17 x 2,40	0,120	0,120	0,120	0,120	28						DIE VENSTERMACHER Holzrahmen IV78 Fichte Uf 1,12
3,49 x 2,40	0,120	0,120	0,120	0,120	19		1	0,120			DIE VENSTERMACHER
3,18 x 2,40	0,120	0,120	0,120	0,120	20		1	0,120			Holzrahmen IV78 Fichte Uf 1,12 DIE VENSTERMACHER Holzrahmen IV78 Fichte Uf 1,12
1,83 x 1,63	0,120	0,120	0,120	0,120	32		1	0,120			DIE VENSTERMACHER Holzrahmen IV78 Fichte Uf 1,12
2,36 x 2,40 *	0,120	0,120	0,120	0,120	19						DIE VENSTERMACHER
1,17 x 1,63	0,120	0,120	0,120	0,120	32						Holzrahmen IV78 Fichte Uf 1,12 DIE VENSTERMACHER Holzrahmen IV78 Fichte Uf 1.12
1,27 x 1,63 *	0,120	0,120	0,120	0,120	31						DIE VENSTERMACHER Holzrahmen IV78 Fichte Uf 1,12
1,25 x 0,80 DF	0,120	0,120	0,120	0,120	43						Kunststoff-Alu-Rahmen <=71 Stockrahmentiefe < 88

Rb.li,re,o,u Rahmenbreite links,rechts,oben, unten [m]
Stb. Stulpbreite [m] H-Sp. Anz
Pfb. Pfostenbreite [m] V-Sp. Anz
Typ Prüfnormmaßtyp H-Sp. Anz Anzahl der horizontalen Sprossen V-Sp. Anz Anzahl der vertikalen Sprossen % Rahmenanteil des gesamten Fensters Spb. Sprossenbreite [m]

Heizwärmebedarf Standortklima Wohnbebauung Russareal, Lochau - Haus 3

Heizwärmebedarf Standortklima (Lochau)

BGF 1.213,39 m² L_T 496,76 W/K Innentemperatur 20 °C tau 89,97 h BRI 3.778,88 m³ L_V 343,24 W/K a 6,623

Monat	Tage	Heiz- tage	Mittlere Außen- tempertur °C	Ausnut- zungsgrad	Transmissions- wärme- verluste kWh	Lüftungs- wärme- verluste kWh	nutzbare Innere Gewinne kWh	nutzbare Solare Gewinne kWh	Verhältnis Heiztage zu Tage	Wärme- bedarf *) kWh
Jänner	31	31	-1,11	1,000	7.801	5.391	2.707	1.459	1,000	9.025
Februar	28	28	0,63	0,998	6.465	4.467	2.441	2.181	1,000	6.309
März	31	31	4,22	0,983	5.830	4.029	2.661	3.407	1,000	3.790
April	30	21	8,43	0,869	4.140	2.861	2.278	3.802	0,688	633
Mai	31	0	12,86	0,549	2.637	1.822	1.486	2.934	0,000	0
Juni	30	0	15,96	0,310	1.447	1.000	813	1.632	0,000	0
Juli	31	0	18,03	0,147	730	504	397	837	0,000	0
August	31	0	17,29	0,213	1.002	692	578	1.116	0,000	0
September	30	0	14,17	0,520	2.084	1.440	1.363	2.138	0,000	0
Oktober	31	25	9,25	0,942	3.975	2.747	2.552	2.557	0,812	1.309
November	30	30	3,80	0,998	5.795	4.004	2.616	1.554	1,000	5.630
Dezember	31	31	0,02	1,000	7.386	5.104	2.708	1.140	1,000	8.642
Gesamt	365	197			49.293	34.060	22.599	24.759		35.339

 $HWB_{SK} = 29,12 \text{ kWh/m}^2\text{a}$

^{*)} Wärmebedarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Referenz-Heizwärmebedarf Standortklima Wohnbebauung Russareal, Lochau - Haus 3

Referenz-Heizwärmebedarf Standortklima (Lochau)

BGF 1.213,39 m² L_T 496,76 W/K Innentemperatur 20 °C tau 89,97 h BRI 3.778,88 m³ L_V 343,24 W/K a 6,623

Gesamt	365	197			49.293	34.060	22.599	24.759	·	35.339
Dezember	31	31	0,02	1,000	7.386	5.104	2.708	1.140	1,000	8.642
November	30	30	3,80	0,998	5.795	4.004	2.616	1.554	1,000	5.630
Oktober	31	25	9,25	0,942	3.975	2.747	2.552	2.557	0,812	1.309
September	30	0	14,17	0,520	2.084	1.440	1.363	2.138	0,000	0
August	31	0	17,29	0,213	1.002	692	578	1.116	0,000	0
Juli	31	0	18,03	0,147	730	504	397	837	0,000	0
Juni	30	0	15,96	0,310	1.447	1.000	813	1.632	0,000	0
Mai	31	0	12,86	0,549	2.637	1.822	1.486	2.934	0,000	0
April	30	21	8,43	0,869	4.140	2.861	2.278	3.802	0,688	633
März	31	31	4,22	0,983	5.830	4.029	2.661	3.407	1,000	3.790
Februar	28	28	0,63	0,998	6.465	4.467	2.441	2.181	1,000	6.309
Jänner	31	31	-1,11	1,000	7.801	5.391	2.707	1.459	1,000	9.025
		tage	Außen- tempertur °C	zungsgrad	wärme- verluste kWh	wärme- verluste kWh	Innere Gewinne kWh	Solare Gewinne kWh	Heiztage zu Tage	bedarf *) kWh
Monat	Tage	Heiz-	Mittlere	Ausnut-	Transmissions-	Lüftungs-	nutzbare	nutzbare	Verhältnis	Wärme-

HWB $_{Ref,SK} = 29,12 \text{ kWh/m}^2\text{a}$

^{*)} Wärmebedarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Heizwärmebedarf Referenzklima Wohnbebauung Russareal, Lochau - Haus 3

Heizwärmebedarf Referenzklima

BGF 1.213,39 m² L_T 494,73 W/K Innentemperatur 20 °C tau 90,19 h BRI 3.778,88 m³ L_V 343,24 W/K a 6,637

Gesamt	365	189			46.077	31.968	21.139	21.898		34.353
Dezember	31	31	0,19	1,000	7.292	5.059	2.708	1.057	1,000	8.585
November	30	30	4,16	0,998	5.642	3.915	2.616	1.419	1,000	5.522
Oktober	31	22	9,64	0,929	3.813	2.646	2.515	2.577	0,724	989
September	30	0	15,03	0,454	1.770	1.228	1.189	1.801	0,000	0
August	31	0	18,56	0,114	530	368	307	590	0,000	0
Juli	31	0	19,12	0,064	324	225	173	375	0,000	0
Juni	30	0	17,33	0,196	951	660	514	1.097	0,000	0
Mai	31	0	14,20	0,434	2.135	1.481	1.174	2.433	0,000	0
April	30	16	9,62	0,817	3.697	2.565	2.142	3.566	0,530	294
März	31	31	4,81	0,979	5.591	3.879	2.651	3.386	1,000	3.433
Februar	28	28	0,73	0,998	6.406	4.445	2.441	2.223	1,000	6.187
Jänner	31	31	-1,53	1,000	7.925	5.498	2.708	1.373	1,000	9.342
		tage	tempertur °C	zungsgrad	verluste kWh	verluste kWh	Innere Gewinne kWh	Gewinne kWh	Heiztage zu Tage	bedarf *) kWh
Monat	Tage	Heiz-	Mittlere Außen-	Ausnut-	Transmissions- wärme-	Lüftungs- wärme-	nutzbare	nutzbare Solare	Verhältnis	Wärme-

 $HWB_{RK} = 28,31 \text{ kWh/m}^2\text{a}$

^{*)} Wärmebedarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Referenz-Heizwärmebedarf Referenzklima Wohnbebauung Russareal, Lochau - Haus 3

Referenz-Heizwärmebedarf Referenzklima

BGF 1.213,39 m² L_T 494,73 W/K Innentemperatur 20 °C tau 90,19 h BRI 3.778,88 m³ L_V 343,24 W/K a 6,637

Monat	Tage	Heiz- tage	Mittlere Außen- tempertur °C	Ausnut- zungsgrad	Transmissions- wärme- verluste kWh	Lüftungs- wärme- verluste kWh	nutzbare Innere Gewinne kWh	nutzbare Solare Gewinne kWh	Verhältnis Heiztage zu Tage	Wärme- bedarf *) kWh
Jänner	31	31	-1,53	1,000	7.925	5.498	2.708	1.373	1,000	9.342
Februar	28	28	0,73	0,998	6.406	4.445	2.441	2.223	1,000	6.187
März	31	31	4,81	0,979	5.591	3.879	2.651	3.386	1,000	3.433
April	30	16	9,62	0,817	3.697	2.565	2.142	3.566	0,530	294
Mai	31	0	14,20	0,434	2.135	1.481	1.174	2.433	0,000	0
Juni	30	0	17,33	0,196	951	660	514	1.097	0,000	0
Juli	31	0	19,12	0,064	324	225	173	375	0,000	0
August	31	0	18,56	0,114	530	368	307	590	0,000	0
September	30	0	15,03	0,454	1.770	1.228	1.189	1.801	0,000	0
Oktober	31	22	9,64	0,929	3.813	2.646	2.515	2.577	0,724	989
November	30	30	4,16	0,998	5.642	3.915	2.616	1.419	1,000	5.522
Dezember	31	31	0,19	1,000	7.292	5.059	2.708	1.057	1,000	8.585
Gesamt	365	189			46.077	31.968	21.139	21.898		34.353

HWB _{Ref,RK} = 28,31 kWh/m²a

^{*)} Wärmebedarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

RH-Eingabe

Wohnbebauung Russareal, Lochau - Haus 3

Raumheizung

Allgemeine Daten

Wärmebereitstellung gebäudezentral

<u>Abgabe</u>

Haupt Wärmeabgabe Flächenheizung

Systemtemperatur 40°/30°

Regelfähigkeit Einzelraumregelung mit Thermostatventilen

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

<u>Verteilung</u>			Leitungslängen lt. Defaultwerten				
	gedämmt	Verhältnis	Dämmung	Leitungslänge	konditioniert		
		Dämmstoffdicke zu Rohrdurchmesser	Armaturen	[m]	[%]		
Verteilleitungen	Ja	2/3	Ja	54,09	0		
Steigleitungen	Ja	2/3	Ja	97,07	100		
Anbindeleitunger	n Ja	2/3	Ja	339,75			

Speicher

Art des Speichers für automatisch beschickte Heizungen

Standort nicht konditionierter Bereich

Baujahr ab 1994 Anschlussteile gedämmt

Nennvolumen 936 I Defaultwert

Täglicher Bereitschaftsverlust Wärmespeicher $q_{b,WS} = 4,36 \text{ kWh/d}$ Defaultwert

Bereitstellung

Bereitstellungssystem monovalente Wärmepumpe

<u>Hilfsenergie - elektrische Leistung</u>

Umwälzpumpe 269,29 W Defaultwert Speicherladepumpe 117,77 W Defaultwert

Warmwasserbereitung

Allgemeine Daten

Wärmebereitstellung gebäudezentral

kombiniert mit Raumheizung

Abgabe

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

<u>Wärmeverteilu</u>	ung mit 2	<u>Zirkulation</u>		Leitungsläng	en It. Defa	aultwerte	en
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Dämmung Armaturen	Leitungslänge [m]	kondition [%]	iert	
Verteilleitungen	Ja	2/3	Ja	19,62	0		
Steigleitungen	Ja	2/3	Ja	48,54	100		
Stichleitungen				194,14	Material	Kupfer	1,08 W/m
Zirkulationsleitui	ng Rückla	uflänge		!	konditionier	t [%]	
Verteilleitung	Ja	2/3	Ja	18,62	0		
Steigleitung	Ja	2/3	Ja	48,54	100		

q_{b.WS}

<u>Speicher</u>

Standort

Art des Speichers Wärmepumpenspeicher indirekt

nicht konditionierter Bereich

Baujahr Ab 1994

Nennvolumen 2.427 I Defaultwert

Täglicher Bereitschaftsverlust Wärmespeicher

Anschlussteile gedämmt

mit Elektropatrone

= 4,92 kWh/d Defaultwert

Bereitstellung

Bereitstellungssystem monovalente Wärmepumpe

Hilfsenergie - elektrische Leistung

Zirkulationspumpe 37,68 W Defaultwert Speicherladepumpe 117,77 W Defaultwert

Leistung Umwälzpumpe

	·							
		Wärmepu	umpe					
Wärmepumpenart	Sole / Was	Sole / Wasser						
Betriebsart	Monovalen	Monovalenter Betrieb						
Anlagentyp	Warmwass	Warmwasser und Raumheizung						
Nennwärmeleistung	37,46 kW	Defaultwert						
Jahresarbeitszahl	3,1	berechnet It. ÖN	berechnet It. ÖNORM H5056					
COP	4,2	freie Eingabe	Prüfpunkt: B0/W35					
Betriebsweise	gleitender E	Betrieb						
Verlegungsart	tiefverlegt							
Modulierung	modulieren	der Betrieb						
Hilfsenergie - elektrische	Leistung							

freie Eingabe

420 W

Vermeidung sommerlicher Überwärmung Nachweis gemäß ÖNORM B 8110-3 Ausgabe 2012-03-15

Wohnbebauung Russareal, Lochau - Haus 3 Toni Russ Strasse 6911 Lochau

L1 Immobilien GmbH & Co OG

Top 09 - Wohn-, Esszimmer

✓ erfüllt

Vermeidung sommerlicher Überwärmung

Nachweis gemäß ÖNORM B 8110-3 Ausgabe 2012-03-15

GEBÄUDEDATEN

Katastralgemeinde Lochau

Einlagezahl

Grundstücksnummer 289

Baujahr 2020

Nutzungsprofil Mehrfamilienhaus

Planungsstand Neubauplanung

KLIMADATEN

Normsommer- 21,8 °C Tagesmittel

außentemperatur 1

14,5 °C min. Nacht

28,4 °C max. Tag

Seehöhe

415m

	Fläche	immissionsflächenbezogene speicherwirksame Masse	min.	Anforderung
	m²	kg/m²	kg/m²	
Top 09 - Wohn-, Esszimmer	33,90	16.648,72	2.000,00	erfüllt

Voraussetzungen: Einhaltung der Sicherheitserfordernisse gegen Sturm, Schlagregen, Einbruch u. dgl.

Einhaltung der Anforderungen an den Schallschutz It. ÖNORM B 8115-2

Es sind keine wie immer gearteten Strömungsbehinderungen wie beispielsweise

Insektenschutzgitter oder Vorhänge vorhanden.

Sämtliche Fenster der als kritisch eingestuften Räume können nachts offen gehalten werden.

ErstellerIn WSS Thomas Schwarz

Alte Landstrasse 39

6820 Frastanz

Unterschrift

Normsommeraußentempratur Die Normsommeraußentemperatur ist der 24 Stunden Mittelwert (Tagesmittelwert)

der an 130 Tagen innerhalb von 10 Jahren überschritten wird.

Die Berechnung entspricht der ÖNORM B 8110-3 Ausgabe: 2012-03-15

Wärmeschutz im Hochbau Teil 3: Vermeidung sommerlicher Überwärmung

Vereinfachter Nachweis

Vermeidung sommerlicher Überwärmung Wohnbebauung Russareal, Lochau - Haus 3

Raum Top 09 - Wohn-, Esszimmer

Nutzfläche 33,90 m² Nettovolumen 84,75 m³

Fensterlüftung

Luftwechselzahl 2,50 / h

✓ Einrichtung berücksichtigt

Luftvolumenstrom 246,69 m³/hm²

gesamte speicherwirksame Masse 14.299 kg

Fensterfläche (Architekturlichte) 14,34 m²

Immisionsfläche 0,86 m²

immissionsflächenbezogene

speicherwirksame Masse 16.649 kg/m²

Bauteilgewicht	Aus- richtung	Fläche m²	flächenbezogene speicherwirksame Masse kg/m²	speicherwirksame Masse kg
AW01 Aussenwand allgemein	S	17,06	25,69	438
AW01 Aussenwand allgemein	W	1,75	25,69	45
ZW01 Innenwände allgemein		33,80	21,93	741
ZD01 Warme Zwischendecke		33,90	103,14	3.496
FD01 Flachdach allgemein		33,90	244,55	8.290
Einrichtung		33,90	38,00	1.288

Fenster	Anzahl	Aus- richtung	Fläche m²	Neigung	Anzahl Scheiben	Ug	g- U Wert	Jw
1,83 x 1,63	2	S	5,97	90°	3	0,70	0,51 0,9	95
3,49 x 2,40	1	W	8,38	90°	3	0,70	0,51 0,8	85

Verschattung	Ausricht.	Sonnenschutz	von - bis	τ_{eB}	ρ_{eB}	F _C	F _{SC}
1,83 x 1,63	S	Außenjalousie, hell	8:00 - 19:00	0,05	0,50	0,15	0,938
3,49 x 2,40	W	Außenjalousie, hell	8:00 - 19:00	0,05	0,50	0,15	0,968

Legende Neigung: 0° = Waagrecht, 90° = Lotrecht Fenster: zu = geschlossen, kipp. = gekippt, offen = geöffnet; Ug = U-Wert Glas; Uw = U-Wert Fenster

 $\tau_{eB} \quad \text{solarer Transmissionsgrad} \qquad \qquad \rho_{eB} \quad \text{solarer Reflexionsgrad}$

F_C Abminderungsfaktor des beweglichen Sonnenschutzes in Kombination mit der Verglasung (wurde früher mit z bezeichnet)

 $\mathsf{F}_{\mathsf{SC}}\quad \mathsf{Verschattungsfaktor}\ \mathsf{für}\ \mathsf{Umgebung},\ \mathsf{auskragende}\ \mathsf{Bauteile},\ \ \mathsf{Fensterlaibung}\ \mathsf{lt}.\ \mathsf{\ddot{O}NORM}\ \mathsf{B}\ \mathsf{8110-6}$

Speicherwirksame Masse Wohnbebauung Russareal, Lochau - Haus 3

von Innen nach Außen	Dicke m	λ W/mk		spez. Wk J/kgK
70				1.000
				1.000
6.7 %	0,0120			2.340
,	0.0500			1.030
71,0 70				1.700
14.7 %	0,0.00			2.340
	0.2400			1.030
,0 /0				850
#				792
				2.340
				2.340
Speicherwirks	same was	sse [kg/m²]	m _{w,B,A}	25,71
	Dicke	λ	Dichte	spez. Wk
von Außen nach Innen	m	W/mk	kg/m³	J/kgK
# *	0,1200	2,000	1.700	910
				792
				1.700
				1.260
<i>"</i>				1.400
#				1.260
"				1.000
				1.000
Speicherwirks				
			11,2,,	
	Dicke	λ	Dichte	spez. Wk
von Innen nach Außen	m	W/mk	kg/m³	J/kgK
#	0,0150	0,150	740	2.340
			2.200	1.000
#				1.680
·				900
				1.450
				1.000
				1.000
Speicherwirks				
				spez. Wk
von Innen nach Außen	m	W/mk	kg/m³	J/kgK
	0,0125	0,250	900	1.000
	0,0125	0,250	900	1.000
	0,0750	0,040	15	900
	0,0125	0,250	900	1.000
	0,0125		900	1.000
Speicherwirks				
Operation with	Janno Ivido	,co [kg/iii]	w,B,A	21,00
	6,7 % 77,3 % 14,7 % 77,3 % # # * Speicherwirks von Außen nach Innen # * # Speicherwirks von Innen nach Außen # # Speicherwirks von Innen nach Außen	von Innen nach Außen m 0,0125 0,0125 6,7 % 77,3 % 0,0500 77,3 % 0,2400 0,0160 14,7 % 0,0002 0,0160 # * 0,0300 0,0500 Speicherwirksame Mass Dicke m von Außen nach Innen m # * 0,0002 # 0,0002 0,0060 # 0,0060 0,0050 Speicherwirksame Mass Von Innen nach Außen Dicke m Dicke m Von Innen nach Außen Dicke m	von Innen nach Außen m W/mk 0,0125 0,250 0,0125 0,250 6,7 % 0,120 77,3 % 0,0500 0,040 0,0180 0,130 14,7 % 0,120 77,3 % 0,2400 0,040 0,0160 0,110 # 0,0002 0,220 # * 0,0300 0,120 Speicherwirksame Masse [kg/m²] Kg/m²] Von Außen nach Innen Dicke π λ # 0,0002 0,220 # 0,0002 0,220 # 0,0002 0,220 # 0,0002 0,230 0,2600 0,038 0,230 0,3600 2,300 0,0050 0,0050 0,830 Speicherwirksame Masse [kg/m²] Von Innen nach Außen m W/mk # 0,0002 0,350 0,038 0,2200 2,300 0,0050 0,830 Speicherwirksame Masse [kg/m²] Von	von Innen nach Außen m W/mk kg/m³ 0,0125 0,250 900 0,0125 0,250 900 6,7 % 0,120 475 77,3 % 0,0500 0,040 15 0,0180 0,130 650 14,7 % 0,120 475 77,3 % 0,2400 0,040 15 0,0160 0,110 500 # * 0,0300 0,120 475 # * 0,0500 0,120 475 Speicherwirksame Masse [kg/m²] m m,g,B,A W/mk kg/m³ # * 0,1200 2,000 1.700 # * 0,1200 2,000 1.700 # * 0,1200 2,000 1.700 # * 0,0002 0,220 600 # * 0,0150 0,230 1.100 0,3600 2,300 2.325 0,0050 0,830 1.600 Speiche