Energieausweis für Wohngebäude oib Osterreichisches Nr. 93233-1

Objekt	BVH Sonnengarten, Höchst - Haus A		
Gebäude (-teil)	BVH Sonnengarten, Höchst - Haus A	Baujahr	2021
Nutzungsprofil	Mehrfamilienhäuser	Letzte Veränderung	ca. 2021
Straße	Sonnengarten	Katastralgemeinde	Höchst
PLZ, Ort	6973 Höchst	KG-Nummer	91111
Grundstücksnr.	4215/130	Seehöhe	403 m

SPEZIFISCHE KENNWERTE AM GEBÄUDESTANDORT	HWB _{Ref.} kWh/m²a	PEB kWh/m²a	CO₂ kg/m²a	f _{GEE}
				x/y
A++	10			0,55
A+		A+ 61	A+ 9	
A			15	A 0,75
В	В 31	160		
С				1,00
D			40	
E			50	
F	200	340	60	3,25
G	250	400	70	4,00

HWB_{Ref.}: Der Referenz-Heizwärmebedarf beschreibt jene Wärmemenge, die in einem Raum bereitgestellt werden muss, um diesen auf einer normativ geforderten Raumtemperatur (bei Wohngebäude 20°C) halten zu können. Dabei werden etwaige Erträge aus Wärmerückgewinnung bei vorhandener raumlufttechnischer Anlage nicht berücksichtigt.

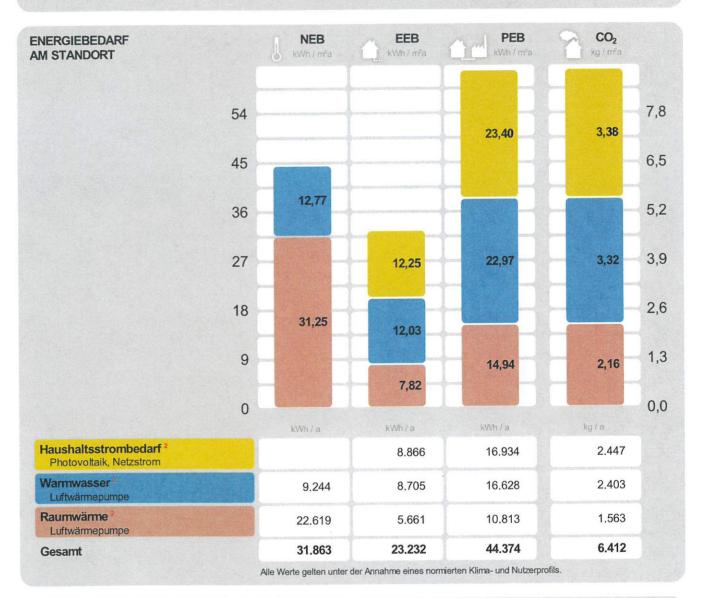
NEB (Nutzenergiebedarf): Energiebedarf für Raumwärme (siehe HWB) und Energiebedarf für das genutzte Warmwasser.

EEB: Gesamter Nutzenergiebedarf (NEB) inklusive der Verluste des haustechnischen Systems und aller benötigten Hilfsenergien, sowie des Strombedarfs für Geräte und Beleuchtung. Der **Endenergiebedarf** entspricht – unter Zugrundelegung eines normierten Benutzerverhaltens – jener Energiemenge, die eingekauft werden muss.

PEB: Der **Primärenergiebedarf** für den Betrieb berücksichtigt in Ergänzung zum Endenergiebedarf (EEB) den Energiebedarf aus vorgelagerten Prozessen (Gewinnung, Umwandlung, Verteilung und Speicherung) für die eingesetzten Energieträger.

CO₂: Gesamte dem Endenergiebedarf (EEB) zuzurechnende Kohlendioxidemissionen für den Betrieb des Gebäudes einschließlich der Emissionen aus vorgelagerten Prozessen (Gewinnung, Umwandlung, Verteilung und Speicherung) der eingesetzten Energieträger.

 f_{GEE} : Der **Gesamtenergieeffizienz-Faktor** ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf (Anforderung 2007).


Alle Werte gelten unter der Annahme eines normierten Klima- und Nutzerprofils. Sie geben den rechnerischen Jahresbedarf je Quadratmeter beheizter Brutto-Grundfläche am Gebäudestandort an.

Energieausweis für Wohngebäude Nr. 93233-1 OIB ÖSTERREICHISCHES

GEBÄUDEKENNDATEN

0,30 W/m2K 1,91 m mittlerer U-Wert charakteristische Länge Brutto-Grundfläche 723,8 m² 22,99 198 d LEK--Wert Bezugsfläche 579,0 m² Heiztage Fensterlüftung 3.459 Kd Art der Lüftung 2.279,7 m³ Heizgradtage 12/20 Brutto-Volumen mittelschwer Gebäude-Hüllfläche 1.190,52 m² Klimaregion West1 Bauweise 20 °C -10.2 °C Soll-Innentemperatur Norm-Außentemperatur Kompaktheit AV 0.52 m⁻¹

ERSTELLT		ErstellerIn	Wärme-, und Schallschutztechnik - Schwarz Thomas
EAW-Nr.	93233-1		Alter Landstrasse 39 ALLECHUTZTECHNIK
GWR-Zahl	keine Angabe		6820 Frastanz
Ausstellungsdatum			
Gültig bis	15. 06. 2031	Unterschrift	Technisches Bürd - Ingenieurbürd für Bauphysik 6828 Frastanz Alte Landstrasse 39 Tel.: 05522/52953-0 Fax.: 05522/52953-4

manum beeinnussier vvesien

2 Die spezifischen & absoluten Ergebnisse in kWh/m²a bzw. kWh/a auf Ebene von EEB, PEB und CO₂ beinhalten jeweils die Hilfsenergie. Etwaige vor Ort erzeugten Erträge aus einer thermischen Solaranlage und/oder einer Photovoltaikanlage (PV) sind berücksichtigt. Für den Warmwasserwärme- und den Haushaltsstrombedarf werden standardisierte Normbedarfswerte herangezogen. Es werden nur Bereitstellungssysteme angezeigt, welche einen nennenswerten Beitrag beisteuern. Können aus Platzgründen nicht alle Bereitstellungssysteme dargestellt werden, so wird dies durch "u.A." (und Andere) kenntlich gemacht. Weitere Details sind dem technischen Anhang zu entnehmen.

Energieausweis für Wohngebäude Nr. 93233-1

ERGÄNZENDE INFORMATIONEN / VERZEICHNIS

Anlass für die Erstellung	Neubau	Der Anlass für die Erstellung bestimmt die Anforderung welche für ein etwaiges baurechtliches Verfahren einzuhalten sind.	
Rechtsgrundlage	BTV LGBI Nr. 93/2016 & BEV LGBI Nr. 92/2016 (ab 1.1.2017)	Die Bautechnikverordnung LGBI Nr. 93/2016 sowie die Baueingabeverordnung LGBI Nr 92/2016 verweisen bzgl. der energie- und klimapolitischen Vorgaben in weiten Teilen auf die OIB Richtlinie 6 (Ausgabe März 2015).	
Umsetzungsstand	Planung	Kennzeichnet den Stand der Umsetzung eines Gebäudes zum Zeitpunkt der Ausstellung des Energieausweises.	
Hintergrund der Ausstellung	Baurechtliches Verfahren, Verkauf/Vermietung (Inbestandgabe), Aushangpflicht, Wohnbauförderung, andere Gründe	Auswahlmöglichkeiten: Baurechtliches Verfahren, Verkauf/Vermietung (In-Bestar Gabe), Aushangpflicht, Sanierungsberatung, Förderung, andere Gründe	
Berechnungs-			
grundlagen	gewährleisten inshesondere in	n Falle eines Bauverfahrens einen eindeutigen Bezug zu einem definierten Planstand	

Weitere Informationen zu kostenoptimalem Bauen finden Sie unter www.vorarlberg.at/energie

GEBÄUDE- BZW. GEBÄUDETEIL DER MIT DEM ENERGIEAUSWEIS ABGEBILDET WIRD				
Baukörper	Alleinstehender Baukörper	Auswahlmöglichkeiten: Alleinstehender Baukörper, zonierter Bereich des Gesamtgebäudes, Zubau an bestehenden Baukörper		
Beschreibung des Gebäude(teils)				
Genaude(tells)	Ausführliche Beschreibung des berechneten Gebäude	es bzwteiles in Ergänzung zur Kurzbeschreibung auf Seite 1 des Energieausweises.		
Allgemeine Hinweise				
Tilliweise		Wesentliche Hinweise zum Energieausweis.		
GESAMTES GEBA	ÄUDE			
Beschreibung	BVH Sonnengarten, Höchst - Haus A			
		Beschreibung des gesamten Gebäudes (inklusiver der nicht berechneten Teile).		
Nutzeinheiten	7	Anzahl der Nutzeinheiten im gesamten Gebäude.		
Obergeschosse	3	Anzahl jener Geschosse im gesamten Gebäude, bei welchen der Großteil über dem Geländeniveau liegt.		
Untergeschosse	1	Anzahl jener Geschosse im gesamten Gebäude, bei welchen der Großteil der Brutto-Grundfläche unter dem Geländeniveau liegt.		

		Brutto-Grundflache unter dem Gelandeniveau liegt.			
KENNZAHLEN FÜR DIE AUSWEISUNG IN INSERATEN					
HWB	31,3 kWh/m²a (B)	Der spezifische Heizwärmebedarf (HWB) und der Faktor für die Gesamt- energieeffizienz (fGEE) sind laut dem Energieausweisvorlage Gesetz 2012 bei In-			
f_{GEE}	0,75 (A)	Bestand-Gabe (Verkauf und Vermietung) verpflichtend in Inseraten anzugeben. Die Kennzahlen beziehen sich auf das Standortklima.			
KENNZAHLEN FÜ	R DIVERSE FÖRDERANSUCHEN				
HWB _{RK}	30,9 kWh/(m²a)	Heizwärmebedarf an einem fiktiven Referenzstandort (RK Referenzklima).			
$HWB_{Ref.,RK}$	30,9 kWh/(m²a)	Referenz-Heizwärmebedarf (Ref.) an einem fiktiven Referenzstandort (RK Referenzklima). Dieser Wert ist u.a. für KPC Förderungen relevant.			
$HWB_{SK}\left(Q_{h,a,SK}\right)$	22.619,0 kWh/a	Jährlicher Heizwärmebedarf am Gebäudestandort (SK Standortklima). Dieser Wert ist u.a. für KPC Förderungen relevant.			
$HWB_{Ref.,SK}$	31,3 kWh/(m²a)	Referenz-Heizwärmebedarf (Ref.) am Gebäudestandort (SK Standortklima). Dieser Wert wird u.a. für die Energieförderung und die Wohnbauförderung in			
DED		Vorarlberg benötigt.			
PEB _{SK}	61,3 kWh/(m²a)	Primärenergiebedarf am Gebäudestandort (SK Standortklima). Etwaige Erträge aus Photovoltaikanlagen werden berücksichtigt. Dieser Wert ist u.a. für die Wohnbauförderung in Vorarlberg relevant.			
CO _{2 SK}	8,9 kg/(m²a)	Kohlendioxidemissionen am Gebäudestandort (SK Standortklima). Etwaige Erträge aus Photovoltaikanlagen werden berücksichtigt. Dieser Wert ist u.a. für die			
		Wohnbauförderung in Vorarlberg relevant.			

Energieausweis für Wohngebäude OIB OSTERREICHISCHES Nr. 93233-1

Ol3	137,4 Punkte	Ökoindikator des Gebäudes (Bilanzgrenze 0) bezogen auf die konditionierte Bruttogrundfläche (Ol3BG0,BGF). Dieser Wert ist u.a. für die Wohnbauförderung		
		in Vorarlberg relevant.		
Leistung PV	5,8 kW _p	Die Peakleistung (Ppk) einer Photovoltaikanlage wird bei Normprüfbedingunge entsprechend der Definition gemäß ÖNORM H 5056 Kap. 11.2 (2014) ermittelt		
		Dieser Wert ist u.a. für die Wohnbauförderung in Vorariberg relevant.		

ENERGIEAUSWEIS-ERSTELLER

Kontaktdaten Thomas Schwarz

Wärme-, und Schallschutztechnik -

Schwarz Thomas Alte Landstrasse 39 6820 Frastanz

Telefon: +43 (0)5522 / 52953 E-Mail: office.wss@aon.at

Berechnungsprogramm

GEQ, Version 2021.051601

Berechnungsprogramm- und version mit dem der Energieausweis erstellt wurde.

Daten des Energieausweis-Erstellers für die einfache Kontaktaufnahme.

VERZEICHNIS

1.1 - 1.4 Seiten 1 und 2

Ergänzende Informationen / Verzeichnis

2.1 - 2.2 Anforderungen Baurecht

3.1 - 3.5 Bauteilaufbauten

Anhänge zum EAW:

A.1 - A.26 A. BVH Sonnengarten, Höchst - Haus A

Alle Teile des Energieausweises sind über die Landesplattform zum Energieausweis einsehbar: https://www.eawz.at/?eaw=93233-1&c=246fee1e

Energieausweis für Wohngebäude Nr. 93233-1

2. ANFORDERUNGEN BAURECHT

ZUSA	RARAF			
71 ISA	IVIIVIE	-N- <i>L</i>	1.5.51	NI -

Anlass für die Erstellung

Neubau

Rechtsgrundlage BTV LGBI Nr. 93/2016 & BEV LGBI Nr.

92/2016 (ab 1.1.2017)

Die Bautechnikverordnung LGBI Nr. 93/2016 sowie die Baueingabeverordnung LGBI Nr. 92/2016 verweisen bzgl. der energie- und klimapolitischen Vorgaben in weiten Teilen auf die OIB Richtlinie 6 (Ausgabe März 2015).

Hintergrund der Ausstellung

Baurechtliches Verfahren, Verkauf/Vermietung (Inbestandgabe), Aushangpflicht, Wohnbauförderung,

andere Gründe

Sämtliche Anforderungen zum Thema Energieeinsparung & Wärmeschutz

alle Anforderungen durch allgemein bekannte Lösungen erfüllt

Sämtliche Anforderungen der OIB-RL 6 bzw. der baurechtlichen Anforderungen in Vorarlberg zum Thema "Energieeinsparung und Wärmeschutz" sind durch Anwendung von praxisbewährten Lösungen erfüllt. Eine detaillierte Plausibilitätsprüfung im Rahmen des Bauverfahrens ist i.d.R. nicht notwendig.

ANFORDERUNGEN

Wärmeübertragende Bauteile

vollständig erfüllt

Die Anforderungen an wärmeübertragende Bauteile gemäß (OIB-RL6 Ausgabe März 2015, Pkt. 4.4 BEV §1 Abs.(3) lit. c & d sowie der BTV §41a ist im Zuge der Ausführung vom Bauherrn oder einem befähigten Vertreter zu beachten bzw. zu erfüllen. Detaillierte Informationen zu den Bauteilen finden Sie im Abschnitt "Bauteilaufbauten"

	Soll	lst	Anforderungen	
HWB _{Ref, SK}	35,9 kWh/m²a	31,3 kWh/m²a	erfüllt	Die Anforderung an den Heizwärmebedarf bei Neubau von Wohngebäuden gemäß BTV §41 Abs.(3) &Abs.(7) wurde rechnerisch nachgewiesen.
PEB _{SK}	165,0 kWh/(m²a)	61,3 kWh/(m²a)	erfüllt	Die Anforderung an den Primärenergiebedarf bei Neubau von Wohngebäuden gemäß BTV §41 Abs.(3) & Abs.(7) wurde rechnerisch nachgewiesen.
CO _{2 SK}	24,0 kg/(m²a)	8,9 kg/(m²a)	erfüllt	Die Anforderung an die Kohlendioxidemissionen bei Neubau von Wohngebäuden gemäß BTV §41 Abs.(3) & Abs.(7) wurde rechnerisch nachgewiesen.

ANFORDERUNGEN AN DAS GEBÄUDETECHNISCHE SYSTEM

Anforderung erneuerbarer Anteil

erfüllt (CO₂-Anforderung erfüllt)

Die Anforderung gemäß BTV §41 Abs.(8) lit.a bzw. OIB RL 6 (Ausgabe März 2015), Punkt 4.3 "Anforderung an den erneuerbaren Anteil" wurde erfüllt.

Sommerlicher Wärmeschutz

erfüllt (Nachweis 8110-3 geführt)

Der EAW-Ersteller bestätigt auf Basis der Berechnung nach ÖNORM B 8110-3 die Einhaltung des "Sommerlichen Wärmeschutzes" (OIB-RL 6, Ausgabe März 2015, Punkt 4.8). Die Berechnung liegt im Anhang bei

Anforderung elektr. Direkt-Widerstandsheizung

erfüllt / ist zu erfüllen

Die Anforderung gemäß BTV §41 Abs.(10) ist zu beachten bzw. zu erfüllen.

Anforderung Wärmerückgewinnung

erfüllt (keine raumlufttechn. Anlage vorgesehen / vorhanden) In dem betrachteten Gebäude/-teil ist keine raumlufttechnische "Zu- und Abluftanlage" vorgesehen / vorhanden. Damit ist die Anforderung der OIB-RL 6 (Ausgabe März 2015), Punkt 5.1 "Wärmerückgewinnung" erfüllt.

Hocheffiziente alternative Energiesysteme

erfüllt (CO₂ \leq 13 kg/(m²a))

Die Anforderung gemäß BTV §41 Abs.(8) lit.a bzw. der OIB RL 6 (Ausgabe März 2015), Punkt 5.2 "Einsatz hocheffizienter alternativer Energiesysteme" wurde

Anforderung zentrale Wärmebereitstellung

erfüllt (vorhanden)

Die Anforderung der OIB-RL 6 (Ausgabe März 2015), Punkt 5.3 "Zentrale Wärmebereitstellungsanlage" ist erfüllt, da eine zentrale Wärmebereitstellungsanlage vorhanden ist

Anforderung Wärmeverteilung

erfüllt / ist zu erfüllen

Die Anforderung der OIB-RL 6 (Ausgabe März 2015), Punkt 5.4 "Wärmeverteilung" ist zu erfüllen. Sie gilt bei Neubau/ wesentlicher Änderung der Verwendung jeweils für die gesamte betroffene Anlage.

Alle Dokumente und rechtlichen Grundlagen, auf die in diesem Energieausweis verwiesen wird, finden Sie hier; http://www.eawz.at/RG_ab2013

Energieausweis für Wohngebäude Nr. 93233-1

2. ANFORDERUNGEN BAURECHT

WEITERE ANFORDERUNGEN

Kondensation an der inneren BT-Oberfläche bzw. im Inneren von BT

Luft- & Winddichtheit

Die Erfüllung der Anforderung gemäß OIB-RL 6 (Ausgabe März 2015), Punkt ist einzuhalten 4.7 "Kondensation an der inneren Bauteiloberfläche bzw. im Inneren von Bauteilen" ist primär von der Planungs- und Umsetzungsqualität abhängig.

ist einzuhalten

Die Erfüllung der Anforderung gemäß OIB-RL 6 (Ausgabe März 2015), Punkt 4.9 "Luft- und Winddichtheit" ist primär von der Planungs- und Umsetzungsqualität abhängig. Der EAW-Ersteller ist angehalten einen realistisch erreichbaren Luftdichtigkeitswert in der Berechnung anzunehmen.

Alle Dokumente und rechtlichen Grundlagen, auf die in diesem Energieausweis verwiesen wird, finden Sie hier: http://www.eawz.at/RG_ab2013

Energieausweis für Wohngebäude OIB OSTERREICHISCHES Nr. 93233-1

Zustand:

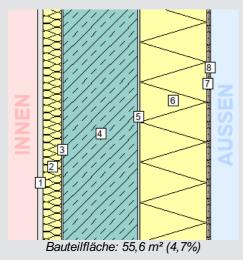
Zustand:

3. BAUTEILAUFBAUTEN - OPAKE BAUTEILE, SEITE 1/4

WÄNDE gegen Außenluft

Bauteilfläche: 381,8 m² (32,1%)

AUSSENWAND ALLGEMEIN


			neu
Schicht	d	λ	R
von konditioniert (beheizt) – unkonditioniert (unbeheizt)	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,13
1. Spachtelputz	0,50	0,830	0,01
2. Stahlbeton	20,00	2,300	0,09
3. Kleber mineralisch	0,50	1,000	0,01
4. RÖFIX EPS-F 031 EPS-Fassadendämmplatte "Lambdapor"	18,00	0,031	5,81
5. Kleber mineralisch	0,50	1,000	0,01
6. Klinkerriemchenfassade (geklebt)	2,00	0,870	0,02
R _{se} (Wärmeübergangswiderstand außen)			0,04
Gesamt	41,50		6,10

	U Bauteil
Wert:	0,16 W/m ² K
Anforderung:	max. 0,30 W/m ² K
Erfüllung:	erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. 0,30 $\rm W/m^2K$).

AUSSENWAND ZUM CARPORT

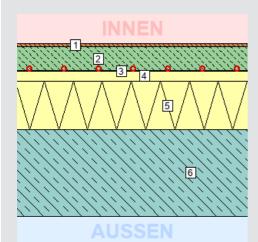
WÄNDE gegen Außenluft

			Heu
Schicht	d	λ	R
von konditioniert (beheizt) – unkonditioniert (unbeheizt)	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,13
1. Gipskartonplatte	1,50	0,250	0,06
2. Mineralwolle / Metallunterkonstruktion	5,00	0,040	1,25
3. Luftraum	0,50	0,240	0,02
4. Stahlbeton	20,00	2,300	0,09
5. Kleber mineralisch	0,50	1,000	0,01
6. RÖFIX EPS-F 031 EPS-Fassadendämmplatte "Lambdapor"	18,00	0,031	5,81
7. Grundputz	0,70	0,470	0,01
8. Deckputz (Silikonharzputz)	0,30	0,700	0,00
R _{se} (Wärmeübergangswiderstand außen)			0,04
Gesamt	46,50		7,41

Wert: 0,14 W/m²K
Anforderung: max. 0,30 W/m²K
Erfüllung: erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. 0,30 $\rm W/m^2K$).

Energieausweis für Wohngebäude OIB OSTERBEICHISCHES Nr. 93233-1


Zustand:

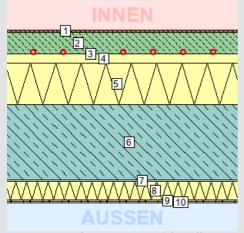
Zustand:

neu

3. BAUTEILAUFBAUTEN - OPAKE BAUTEILE, SEITE 2/4

FUSSBODEN ZUM KELLERDECKEN gegen unbeheizte Gebäudeteile

			neu
Schicht	d	λ	R
von konditioniert (beheizt) – unkonditioniert (unbeheizt)	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,17
1. Bodenbelag	1,00	0,150	0,07
2. Zementestrich	7,00	1,580	0,04
3. Dampfsperre (zB: Vap 2000 o. glw.)	0,02	0,350	0,00
4. Trittschalldämmung (zB: Isover TDPT o. glw.)	3,00	0,033	0,91
5. Wärmedämmung EPS	14,00	0,038	3,68
6. Stahlbeton	25,00	2,300	0,11
R _{se} (Wärmeübergangswiderstand außen)			0,17
Gesamt	50,02		5,15


Bauteilfläche: 41,1 m² (3,4%)

Wert: 0,19 W/m²K
Anforderung: max. 0,40 W/m²K
Erfüllung: erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBl. 93/2016), max. 0,40 $\rm W/m^2K$).

FUSSBODEN ZUR TIEFGARAGE

DECKEN gegen Garagen

Schicht	d	λ	R
von konditioniert (beheizt) – unkonditioniert (unbeheizt)	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,17
1. Bodenbelag	1,00	0,150	0,07
2. Zementestrich	7,00	1,580	0,04
3. Dampfsperre (zB: Vap 2000 o. glw.)	0,02	0,350	0,00
4. Trittschalldämmung (zB: Isover TDPT o. glw.)	3,00	0,033	0,91
5. Wärmedämmung EPS	14,00	0,038	3,68
6. Stahlbeton	25,00	2,300	0,11
7. Kleber mineralisch	0,50	1,000	0,01
8. Wärmedämmung EPS	6,00	0,038	1,58
9. Grundputz	0,70	0,470	0,01
10. Deckputz (Silikonharzputz)	0,30	0,700	0,00
R _{se} (Wärmeübergangswiderstand außen)			0,17
Gesamt	57,52		6,76

Bauteilfläche: 108,1 m² (9,1%)

	U Bauteil
Wert:	0,15 W/m ² K
Anforderung:	max. 0,30 W/m ² K
Erfüllung:	erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. 0,30

W/m²K).

Energieausweis für Wohngebäude OIB OSTERBEICHISCHES Nr. 93233-1

Zustand:

Zustand:

neu

neu

3. BAUTEILAUFBAUTEN - OPAKE BAUTEILE, SEITE 3/4

FUSSBODEN ZUR TG-RAMPE DECKEN über Außenluft (z.B. über Durchfahrten, Parkdecks) Schicht von konditioniert (bei R_{st} (Wärmeübergan) 1. Bodenbelag 2. Zementestrich 3. Dampfsperre (zB: 4. Trittschalldämmur 5. Wärmedämmung 6. Stahlbeton 7. Kleber mineralisch 8. Wärmedämmung 9. Grundputz 10. Deckputz (Silikon R_{se} (Wärmeübergan) Gesamt

iteli, i aikueuks)			Heu
Schicht	d	λ	R
von konditioniert (beheizt) – unkonditioniert (unbeheizt)	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,17
1. Bodenbelag	1,00	0,150	0,07
2. Zementestrich	7,00	1,580	0,04
3. Dampfsperre (zB: Vap 2000 o. glw.)	0,02	0,350	0,00
4. Trittschalldämmung (zB: Isover TDPT o. glw.)	3,00	0,033	0,91
5. Wärmedämmung EPS	7,00	0,038	1,84
6. Stahlbeton	25,00	2,300	0,11
7. Kleber mineralisch	0,50	1,000	0,01
8. Wärmedämmung EPS	14,00	0,038	3,68
9. Grundputz	0,70	0,470	0,01
10. Deckputz (Silikonharzputz)	0,30	0,700	0,00
R _{se} (Wärmeübergangswiderstand außen)			0,04
Gesamt	58,52		6,90

Bauteilfläche: 52,7 m² (4,4%)

Wert: 0,15 W/m²K
Anforderung: max. 0,20 W/m²K
Erfüllung: erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. 0,20 $\rm W/m^2K$).

FUSSBODEN GEGEN AUSSEN

DECKEN über Außenluft (z.B. über Durchfahrten, Parkdecks)

Schicht	d	λ	R
von konditioniert (beheizt) – unkonditioniert (unbeheizt)	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,17
1. Bodenbelag	1,00	0,150	0,07
2. Zementestrich	7,00	1,580	0,04
3. Dampfsperre (zB: Vap 2000 o. glw.)	0,02	0,350	0,00
4. Trittschalldämmung (zB: Isover TDPT o. glw.)	3,00	0,033	0,91
5. Wärmedämmung EPS	7,00	0,038	1,84
6. Stahlbeton	25,00	2,300	0,11
7. Kleber mineralisch	0,50	1,000	0,01
8. RÖFIX EPS-F 031 EPS-Fassadendämmplatte "Lambdapor"	12,00	0,031	3,87
9. Grundputz	0,70	0,470	0,01
10. Deckputz (Silikonharzputz)	0,30	0,700	0,00
R _{se} (Wärmeübergangswiderstand außen)			0,04
Gesamt	56,52		7,09

Bauteilfläche: 85,5 m² (7,2%)

	U Bauteil
Wert:	0,14 W/m ² K
Anforderung:	max. 0,20 W/m ² K
Erfüllung:	erfüllt

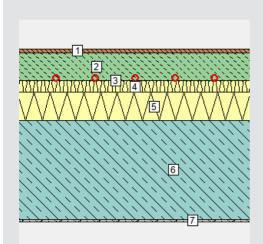
Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. 0,20 $\rm W/m^2K$).

Energieausweis für Wohngebäude Nr. 93233-1

3. BAUTEILAUFBAUTEN - OPAKE BAUTEILE, SEITE 4/4

FLACHDACH ALLGEMEIN Zustand: neu

DECKEN und DACHSCHRÄGEN jeweils gegen Außenluft und gegen Dachräume (durchlüftet oder ungedämmt)


Schicht	d	λ	R
von unkonditioniert (unbeheizt) – konditioniert (beheizt)	cm	W/mK	m²K/W
R _{se} (Wärmeübergangswiderstand außen)			0,04
1. Rundkies 16/32	6,00	*1	*1
Polymerbitumen-Dichtungsbahn (2-lagig)	1,50	0,230	0,07
3. Wärmedämmung EPS-W-25 (im Mittel)	26,00	0,036	7,22
4. Dampfsperre (Alubitumen)	0,80	221,000	0,00
5. Stahlbeton	25,00	2,300	0,11
6. Spachtelputz	0,50	0,830	0,01
R _{si} (Wärmeübergangswiderstand innen)			0,10
Gesamt			7,52
Bauteildicke gesamt / wärmetechnisch relevant	59,80 / 5	3,80	

Bauteilfläche: 285,4 m² (24,0%)

	U Bauteil
Wert:	0,13 W/m ² K
Anforderung:	max. 0,20 W/m ² K
Erfüllung:	erfüllt

Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a (LGBI. 93/2016), max. 0,20 W/m²K).

WARME ZWISCHENDECKE DECKEN innerhalb von Wohn- und Betriebseinheiten

	d	λ	R
Schicht	cm	W/mK	m²K/W
R _{si} (Wärmeübergangswiderstand innen)			0,13
1. Bodenbelag	1,00	0,150	0,07
2. Zementestrich	7,00	1,580	0,04
3. Trennfolie	0,02	0,350	0,00
4. Trittschalldämmung (zB: Isover TDPT o. glw.)	3,00	0,033	0,91
5. Wärmedämmung EPS	7,00	0,038	1,84
6. Stahlbeton	25,00	2,300	0,11
7. Spachtelputz	0,50	0,830	0,01
R _{se} (Wärmeübergangswiderstand außen)			0,13
Gesamt	43,52		3,24

Bauteilfläche: 0,0 m² (0,0%)

U Bauteil
0,31 W/m ² K
keine
-

Für diesen Bauteiltyp gibt es keine Anforderungen in der BTV §41a (LGBI. 93/2016). Bei diesem Bauteil erfolgt keine Kennzeichnung der Innen-/Außenseite, da entsprechend der 4K-Regel (Leitfaden zur OIB RL6) in diesem Bauteil kein zu berücksichtigender Wärmefluss stattfindet.

Zustand:

neu

Energieausweis für Wohngebäude Nr. 93233-1

3. BAUTEILAUFBAUTEN - TÜREN, SEITE 1/1

	äche	y, g.g	U		
Anz.	m²	Bauteil	W/m²K	U-Wert-Anfdg	Zustand
1	2,9	Eingangstüre	1,10	erfüllt ¹	neu

¹ Das Bauteil erfüllt die U-Wert-Anforderung für Neubauten (lt. BTV §41a LGBI. 93/2016, max. 1,70W/m²K).

3. BAUTEILAUFBAUTEN - TRANSP. BAUTEILE, SEITE 1/1

TRANSPARENTE BAUTEILE gegen Außenluft

Zustand:	neu
Rahmen: Holz-Rahmen Fichte <= 74 Stockrahmentiefe <91	U _f = 1,25 W/m ² K
Verglasung: Gaulhofer 3-S GM06 Ug=0,6	$U_g = 0.60 \text{ W/m}^2\text{K}$
Wärmeschutzglas	g = 0.51
Linearer Wärmebrückenkoeffizient	psi = 0,040 W/mK
U _w bei Normfenstergröße:	0,94 W/m²K
Anfdg. an U _w It. BTV 93/2016 §41a:	max. 1,40 W/m²K
Heizkörper:	nein
Gesamtfläche:	175,62 m ²
Anteil an Außenwand: 1	28,5 %
Anteil an Hüllfläche: 2	14,8 %
Das Bauteil erfüllt die U-Wert-Anforderung f	für Neubauten (It. BTV

93/2016 §41a, max. 1,40W/m²K).

Anz.	U_w^3	Bezeichnung
1	0,80	2,68 x 2,45 *
2	1,02	0,72 x 2,45 *
21	0,98	1,00 x 2,45
1	0,81	5,10 x 2,45
1	0,85	2,70 x 2,45
1	0,79	2,75 x 2,45 *
2	1,08	0,60 x 2,45
4	0,80	5,75 x 2,45
2	0,84	4,15 x 2,45
1	0,98	1,00 x 2,45 *
1	0,86	2,50 x 2,45 *

DACHFLÄCHENFENSTER und sonstige transparente Bauteile horizontal oder in Schrägen gegen Außenluft

Zustand:	neu
Rahmen: Kunststoff-Rahmen <=40 Stockrahmentiefe < 71	U _f = 1,60 W/m ² K
Verglasung: Plexiglas für Dachkuppelfenster (3-schalig)	$U_g = 1,60 \text{ W/m}^2\text{K}$ g = 0,58
Linearer Wärmebrückenkoeffizient	psi = 0,040 W/mK
U _w bei Normfenstergröße:	1,69 W/m²K
Anfdg. an U _w lt. BTV 93/2016 §41a:	max. 1,70 W/m²K
Heizkörper:	nein
Gesamtfläche:	1,96 m²
Anteil an Hüllfläche: 2	0,2 %
Das Bauteil erfüllt die U-Wert-Anforderung für	Neubauten (It. BTV

93/2016 §41a, max. 1,70W/m²K).

Anz.	U _w ³	Bezeichnung	
1	1,69	1,40 x 1,40 LK	

 ¹ Anteil transparenter Bauteile (Fenster, Fenstertüren, etc.) an der gesamten vertikalen Bauteilfläche mit Wärmefluss.
 ² Anteil transparenter Bauteile (Fenster, Fenstertüren, etc.) an der gesamten konditionierten Gebäudehülle.
 ³ U... in W/m²K auf Grundlage der jeweiligen Fensterabmessungen

Wohnbauförderung Neubau 2020/2021

Privater Wohnbau

Anforderung WBF

Die Einhaltung etwaiger baurechtlicher Anforderungen wird vorausgesetzt.

 ☑ Einsatz hocheffizientes alternatives Energiesystem für Heizung und Warmwasserbereitung

Energiesparbonus

		Maximalwert	
Referenz-Heizwärmebedarf	31,25	32,00 kWh/m²a	
Primärenergiebedarf	61,29	84,00 kWh/m²a	
CO2	8,86	13,00 kg/m²a	

Umweltbonus

	Index	Maximalwert	
Ol3-Index	137,35	110,00 Punkte	

A/V - Verhältnis = 0,522232

Die obigen Berechnungen sind informativ. Die Bewilligung und/oder Förderzusage kann von weiteren Voraussetzungen abhängen und ausschließlich durch die jeweilige Behörde bzw. Förderstelle erteilt werden. Die Software GEQ wurde von Zehentmayer Software GmbH erstellt, die Verantwortung für die Anwendung und die Richtigkeit der Werte liegt beim Anwender.

Ol3-Klassifizierung - Ökologie der Bauteile BVH Sonnengarten, Höchst - Haus A

Datum BAUBOOK: 16.02.2021	V _B	2.279,69 m ³	١	1,91 m
	ΑB	1.190,52 m ²	KÖF	1.627,00 m ²
	BGF	723,79 m ²	U_m	0,30 W/m ² K

Bauteil	е		Fläche	PENRT	GWP	AP	∆Ol3
			A [m²]	[MJ]	[kg CO2]	[kg SO2]	
AW01	Aussenwand allgemein		381,8	428.149,7	35.245,4	89,8	84,1
AW02	Aussenwand zum Carport		55,6	60.378,6	4.846,9	13,7	83,5
DD01	Fussboden zur TG-Rampe		52,7	87.105,1	7.028,9	20,4	128,9
DD02	Fussboden gegen Aussen		85,5	129.311,6	10.897,4	31,3	120,4
FD01	Flachdach allgemein		285,4	388.850,4	30.250,7	83,1	101,9
KD01	Fussboden zum Keller		41,1	56.830,0	4.911,2	13,9	111,1
ID01	Fussboden zur Tiefgarage		108,1	176.214,1	14.314,2	41,5	127,5
ZD01	Warme Zwischendecke		436,5	538.822,5	49.770,3	138,5	102,5
FE/TÜ	Fenster und Türen		180,5	131.804,3	3.570,1	56,5	69,4
		Summe		1.997.466	160.835	489	
_		PENRT (Primärene Ökoindex PENRT	rgieinhalt	nicht ern.)	[MJ/m²	-	1.227,54 72,75
		GWP (Global Warming Potential) Ökoindex GWP			[kg CO2/m² KOF] OI GWP Punkte		98,84 74,42
		AP (Versäuerung) Ökoindex AP			[kg SO2/m² OI AP F	-	0,30 36,13
		Ol3-BGF (Ökoindex Ol3-BGF = (Ol PENI		WP + OI AP)	OI3- BGF F / 3 * KOF / BG		137,35

OI3-Berechnungsleitfaden Version 4.0, 2018

Baubook - Schichten BVH Sonnengarten, Höchst - Haus A

Indexnr.	Lambda	Dichte	Datum	im Bauteil
		[kg/m²]		
	0,240		06.07.2015	AW02
2142684620	0,194	1	16.02.2021	
	0,038		29.05.2014	KD01, ZD01, DD01, ID01, DD02
2142714927	0,036	23		
				DD01, ID01, AW02, DD02
2142685312	0,700	1.800		
				AW02
2142714820	0,250	900	16.02.2021	
			06.07.2015	DD01, ID01, AW02, DD02
2142685444	0,470	1.350	16.02.2021	
			23.06.2020	AW01
2142714638	0,870	2.100	16.02.2021	
				AW02
2142714916	0,040	15	16.02.2021	
			29.11.2018	ZD01, AW01, FD01
2142710264	0,830	1.600	16.02.2021	
			29.05.2014	KD01, ZD01, AW01, FD01, DD01, ID01, AW02, DD02
2142717541	2,300	2.325	16.02.2021	
				KD01, ZD01, DD01, ID01, DD02
2142723367	0,033	105	16.02.2021	
			04.02.2020	FD01
2142714927	0,036	23	16.02.2021	
			29.05.2014	KD01, ZD01, DD01, ID01, DD02
2142714884	1,580	2.200	16.02.2021	
			23.06.2020	AW01, DD01, ID01, AW02, DD02
2142684362	1,000	1.800		
			23.06.2020	AW01, AW02, DD02
2142685399	0,031	15		
	2142714638 2142714916 2142710264 2142717541 2142723367 2142714927 2142714884 2142684362	2142684620 0,194 0,038 0,036 2142714927 0,036 2142685312 0,700 2142714820 0,250 2142685444 0,470 2142714638 0,870 2142714916 0,040 2142710264 0,830 2142717541 2,300 2142723367 0,033 2142714927 0,036 2142714884 1,580 2142684362 1,000	2142684620 0,240 0,194 0,038 0,038 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,030 0,0	2142684620 0,240 0,194 06.07.2015 2142714927 0,038 29.05.2014 2142714927 0,036 23 16.02.2021 2142685312 0,700 1.800 16.02.2021 2142714820 0,250 900 16.02.2021 2142685444 0,470 1.350 16.02.2021 2142714638 0,870 2.100 16.02.2021 2142714916 0,040 15 16.02.2021 2142710264 0,830 1.600 16.02.2021 2142717541 2,300 2.325 16.02.2021 2142723367 0,033 105 16.02.2021 2142714927 0,036 23 16.02.2021 2142714884 1,580 2.200 16.02.2021 2142684362 1,000 1.800 16.02.2021 23.06.2020 2316.2020 2142684362 1,000 1.800 16.02.2021

Ol3 - Fenster und Türen BVH Sonnengarten, Höchst - Haus A

Glas

Index	Produktbeschreibung	verwendet bei folgenden Fenstern
2142684866	Plexiglas für Dachkuppelfenster (3-schalig)	1,40 x 1,40 LK
2142706746	Gaulhofer 3-S GM06 Ug=0,6 Wärmeschutzglas	1,00 x 2,45 / 5,10 x 2,45 / 2,70 x 2,45 / 0,60 x 2,45 / 5,75 x 2,45 / 4,15 x 2,45 / 2,68 x 2,45 * / 0,72 x 2,45 * / 2,75 x 2,45 * / 1,00 x 2,45 * / 2,50 x 2,45 *

Rahmen

Index	Produktbeschreibung	verwendet bei folgenden Fenstern
2142706783	Holz-Rahmen Fichte <= 74 Stockrahmentiefe <91	1,00 x 2,45 / 5,10 x 2,45 / 2,70 x 2,45 / 0,60 x 2,45 / 5,75 x 2,45 / 4,15 x 2,45 / 2,68 x 2,45 * / 0,72 x 2,45 * / 2,75 x 2,45 * / 1,00 x 2,45 * / 2,50 x 2,45 *
2142706798	Kunststoff-Rahmen <=40 Stockrahmentiefe < 71	1,40 x 1,40 LK

PSI

Index	Produktbeschreibung	verwendet bei folgenden Fenstern
2142684208	Kunststoff/Butyl (3-IV; Ug 0,9 - 1,4; Uf 1,4-2,1)	1,00 x 2,45 / 5,10 x 2,45 / 2,70 x 2,45 / 0,60 x 2,45 / 5,75 x 2,45 / 4,15 x 2,45 / 2,68 x 2,45 * / 0,72 x 2,45 * / 2,75 x 2,45 * / 1,00 x 2,45 * / 2,50 x 2,45 * / 1,40 x 1,40 LK

Türen

Index	Produktbeschreibung	verwendet bei folgenden Türen
2142704597	DOMINANT 3 mit Holzrahmenstock	Eingangstüre

Heizlast Abschätzung

BVH Sonnengarten, Höchst - Haus A

Abschätzung der Gebäude-Heizlast auf Basis der Energieausweis-Berechnung

Berechnungsblatt

Bauherr		Baumeister / Baufirma / Bauträger / Planer							
Firma Sonnengarten Immobilien 0	GmbH	Firma Huber ZT GmbH							
Kirchplatz 11		Kaiser-Franz-Josef-Strasse 4a							
6973 Höchst		6890 Lustenau							
Tel.:		Tel.: 05577/822250							
Norm-Außentemperatur:	-10,2 °C	Standort: Höchst							
Berechnungs-Raumtemperatur:	20 °C	Brutto-Rauminhalt der							
Temperatur-Differenz:	30,2 K	beheizten Gebäudeteile: 2.279,69 m³							
		Gebäudehüllfläche: 1.190,52 m²							
Bauteile		Fläche Wärmed Korr Korr Leitwert							
		A U f ffh							

Gebäude-Heizlast Abschätzung	Luftwechsel =	0,40 1/h	[k	W]	17,0	
Lüftungs - Leitwert L _V			[W/	K]	204,75	
Transmissions - Leitwert L _T			[W/	K]	357,21	
Wärmebrücken (vereinfacht)			[W/	K]	32	
Summe			[W/	K]	325	-
Fenster in Deckenflächen	1,96					
Fensteranteil in Außenwänden 29,0 %	178,53					
Summe Außenwandflächen	437,35					
Summe UNTEN-Bauteile	287,32					
Summe OBEN-Bauteile	287,32	-,	-,	,	,	
ID01 Fussboden zur Tiefgarage	108,10	0,148	0,80	1,50	19,16	
KD01 Fussboden zum Keller	41,06	0,194	0,70	1,50	8,35	
FE/TÜ Fenster u. Türen	180,49	0,885	1,00		159,82	
FD01 Flachdach allgemein	285,36	0,133	1,00	1,00	37,84	
DD02 Fussboden gegen Aussen	85,48	0,141	1,00	1,50	18,08	
AW02 Aussenwand zum Carport DD01 Fussboden zur TG-Rampe	55,56 52,68	0,135 0,145	1,00 1,00	1,50	7,49 11,44	
AW01 Aussenwand allgemein AW02 Aussenwand zum Carport	381,80	0,164	1,00		62,57	
	[m²]	[W/m² K]	[1]	[1]	[W/K]	
	A	U	f	ffh	D. 4. (1. C)	
	1 100110	koeffizient	taktor	taktor	Loitmort	

[W/m² BGF]

Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers. Für die exakte Dimensionierung ist eine Heizlast-Berechnung nach ÖNORM H 7500 erforderlich.

Flächenbez. Heizlast Abschätzung (724 m²)

23,45

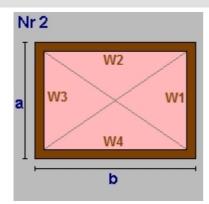
Bauteile

BVH Sonnengarten, Höchst - Haus A

AW01						
	Aussenwand allgemein					
		von Innen nach /	Außen	Dicke	λ	d/λ
Spachtelp				0,0050	0,830	0,006
Stahlbeto				0,2000	2,300	0,087
Kleber mii		_		0,0050	1,000	0,005
	PS-F 031 EPS-Fassadendämmplatte "Lambda	por"		0,1800	0,031	5,806
Kleber mii				0,0050	1,000	0,005
Klinkerrier	mchenfassade (geklebt)			0,0200	0,870	0,023
		Rse+Rsi = 0,17	Dicke gesamt	0,4150	U-Wert	0,16
AW02	Aussenwand zum Carport	von Innen nach /	Außen	Dicke	λ	d/λ
Gipskarto	nplatte			0,0150	0,250	0,060
Mineralwo	olle / Metallunterkonstruktion			0,0500	0,040	1,250
Luftraum				0,0050	0,240	0,021
Stahlbeto	n			0,2000	2,300	0,087
Kleber mii				0,0050	1,000	0,005
	PS-F 031 EPS-Fassadendämmplatte "Lambda	por"		0,1800	0,031	5,806
Grundputz				0,0070	0,470	0,015
Deckputz	(Silikonharzputz)			0,0030	0,700	0,004
		Rse+Rsi = 0,17	Dicke gesamt	0,4650	U-Wert	0,13
KD01	Fussboden zum Keller	von Innen nach /	Außen	Dicke	λ	d/λ
Bodenbela	ad	#		0,0100	0,150	0,067
Zementes	-	F "		0,0700	1,580	0,044
	erre (zB: Vap 2000 o. glw.)	. #		0,0002	0,350	0,001
	dämmung (zB: Isover TDPT o. glw.)	.,		0,0300	0,033	0,909
	mmung EPS			0,1400	0,038	3,684
Stahlbetoi	•			0,2500	2,300	0,109
		Rse+Rsi = 0,34	Dicke gesamt	0,5002	U-Wert	0,19
ID01	Eucobodon zur Tiefgerege					
	Fussboden zur Tiefgarage	to	A O	Dieke	٦	412
D - d - d - d		von Innen nach /	Außen	Dicke	λ	d/λ
Bodenbela	ag	#	Außen	0,0100	0,150	0,067
Zementes	ag trich	# F	Außen	0,0100 0,0700	0,150 1,580	0,067 0,044
Zementes Dampfspe	ag strich erre (zB: Vap 2000 o. glw.)	#	Außen	0,0100 0,0700 0,0002	0,150 1,580 0,350	0,067 0,044 0,001
Zementes Dampfspe Trittschalle	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.)	# F	Außen	0,0100 0,0700 0,0002 0,0300	0,150 1,580 0,350 0,033	0,067 0,044 0,001 0,909
Zementes Dampfspe Trittschalle Wärmedä	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS	# F	Außen	0,0100 0,0700 0,0002 0,0300 0,1400	0,150 1,580 0,350 0,033 0,038	0,067 0,044 0,001 0,909 3,684
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n	# F	Außen	0,0100 0,0700 0,0002 0,0300 0,1400 0,2500	0,150 1,580 0,350 0,033 0,038 2,300	0,067 0,044 0,001 0,909 3,684 0,109
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch	# F	Außen	0,0100 0,0700 0,0002 0,0300 0,1400 0,2500 0,0050	0,150 1,580 0,350 0,033 0,038 2,300 1,000	0,067 0,044 0,001 0,909 3,684 0,109 0,005
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber min Wärmedä	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS	# F	Außen	0,0100 0,0700 0,0002 0,0300 0,1400 0,2500 0,0050 0,0600	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber min Wärmedä Grundputz	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z	# F	Außen	0,0100 0,0700 0,0002 0,0300 0,1400 0,2500 0,0050 0,0600 0,0070	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS	# F	Außen Dicke gesamt	0,0100 0,0700 0,0002 0,0300 0,1400 0,2500 0,0050 0,0600 0,0070 0,0030	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z (Silikonharzputz)	# F #		0,0100 0,0700 0,0002 0,0300 0,1400 0,2500 0,0050 0,0600 0,0070 0,0030	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470 0,700	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015 0,004
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz Deckputz	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z (Silikonharzputz) Fussboden zur TG-Rampe	# F # Rse+Rsi = 0,34	Dicke gesamt	0,0100 0,0700 0,0700 0,0300 0,1400 0,2500 0,0050 0,0600 0,0070 0,0030 0,5752	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470 0,700 U-Wert	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015 0,004 0,15
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz Deckputz DD01 Bodenbele	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z (Silikonharzputz) Fussboden zur TG-Rampe	# F # Rse+Rsi = 0,34 von Innen nach /	Dicke gesamt	0,0100 0,0700 0,0002 0,0300 0,1400 0,2500 0,0050 0,0600 0,0070 0,0030 0,5752 Dicke 0,0100	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470 0,700 U-Wert	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015 0,004 0,15 d / λ 0,067
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz Deckputz DD01 Bodenbela Zementes	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z (Silikonharzputz) Fussboden zur TG-Rampe ag	# F # Rse+Rsi = 0,34 von Innen nach / # F	Dicke gesamt	0,0100 0,0700 0,0700 0,0300 0,1400 0,2500 0,0650 0,0600 0,0070 0,0030 0,5752 Dicke 0,0100 0,0700	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470 0,700 U-Wert λ 0,150 1,580	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015 0,004 0,15 d / λ 0,067 0,044
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz Deckputz DD01 Bodenbele Zementes Dampfspe	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z (Silikonharzputz) Fussboden zur TG-Rampe ag strich erre (zB: Vap 2000 o. glw.)	# F # Rse+Rsi = 0,34 von Innen nach /	Dicke gesamt	0,0100 0,0700 0,0002 0,0300 0,1400 0,2500 0,0050 0,0600 0,0070 0,0030 0,5752 Dicke 0,0100 0,0700 0,0700	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470 0,700 U-Wert λ 0,150 1,580 0,350	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015 0,004 0,15 d / λ 0,067 0,044 0,001
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz Deckputz DD01 Bodenbele Zementes Dampfspe Trittschalle	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z (Silikonharzputz) Fussboden zur TG-Rampe ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.)	# F # Rse+Rsi = 0,34 von Innen nach / # F	Dicke gesamt	0,0100 0,0700 0,0700 0,0002 0,0300 0,1400 0,2500 0,0050 0,0600 0,0070 0,0030 0,5752 Dicke 0,0100 0,0700 0,0700 0,0002 0,0300	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470 0,700 U-Wert λ 0,150 1,580 0,350 0,033	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015 0,004 0,15 d / λ 0,067 0,044 0,001 0,909
Zementes Dampfspe Trittschalli Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz Deckputz DD01 Bodenbela Zementes Dampfspe Trittschalli Wärmedä	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z (Silikonharzputz) Fussboden zur TG-Rampe ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS	# F # Rse+Rsi = 0,34 von Innen nach / # F	Dicke gesamt	0,0100 0,0700 0,0700 0,0002 0,0300 0,1400 0,2500 0,0600 0,0070 0,0030 0,5752 Dicke 0,0100 0,0700 0,0002 0,0300 0,0700	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470 0,700 U-Wert λ 0,150 1,580 0,350 0,033 0,038	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015 0,004 0,15 d / λ 0,067 0,044 0,001 0,909 1,842
Zementes Dampfspe Trittschalli Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz Deckputz DD01 Bodenbela Zementes Dampfspe Trittschalli Wärmedä Stahlbetor	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z (Silikonharzputz) Fussboden zur TG-Rampe ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n	# F # Rse+Rsi = 0,34 von Innen nach / # F	Dicke gesamt	0,0100 0,0700 0,0700 0,0002 0,0300 0,1400 0,2500 0,0600 0,0070 0,0030 0,5752 Dicke 0,0100 0,0700 0,0002 0,0300 0,0700 0,02500	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470 0,700 U-Wert λ 0,150 1,580 0,350 0,033 0,038 2,300	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015 0,004 0,15 d / λ 0,067 0,044 0,001 0,909 1,842 0,109
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz Deckputz DD01 Bodenbele Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z (Silikonharzputz) Fussboden zur TG-Rampe ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch	# F # Rse+Rsi = 0,34 von Innen nach / # F	Dicke gesamt	0,0100 0,0700 0,0700 0,0002 0,0300 0,1400 0,2500 0,0050 0,0600 0,0070 0,0030 0,5752 Dicke 0,0100 0,0700 0,0002 0,0300 0,0700 0,050	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470 0,700 U-Wert λ 0,150 1,580 0,350 0,033 0,038 2,300 1,000	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015 0,004 0,15 d / λ 0,067 0,044 0,001 0,909 1,842 0,109 0,005
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz Deckputz DD01 Bodenbela Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir Wärmedä	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z (Silikonharzputz) Fussboden zur TG-Rampe ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS n neralisch mmung EPS	# F # Rse+Rsi = 0,34 von Innen nach / # F	Dicke gesamt	0,0100 0,0700 0,0700 0,0300 0,1400 0,2500 0,0600 0,0070 0,030 0,5752 Dicke 0,0100 0,0700 0,0002 0,0300 0,0700 0,0700 0,050 0,050 0,01400	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470 0,700 U-Wert λ 0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015 0,004 0,15 d / λ 0,067 0,044 0,001 0,909 1,842 0,109 0,005 3,684
Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz Deckputz DD01 Bodenbela Zementes Dampfspe Trittschalle Wärmedä Stahlbetor Kleber mir Wärmedä Grundputz Grundputz Grundputz Grundputz	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z (Silikonharzputz) Fussboden zur TG-Rampe ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS	# F # Rse+Rsi = 0,34 von Innen nach / # F	Dicke gesamt	0,0100 0,0700 0,0700 0,0300 0,1400 0,2500 0,0600 0,0070 0,030 0,5752 Dicke 0,0100 0,0700 0,0700 0,0700 0,0700 0,0500 0,0400 0,0400 0,0700	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470 0,700 U-Wert λ 0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015 0,004 0,15 d / λ 0,067 0,044 0,001 0,909 1,842 0,109 0,005 3,684 0,015
Zementes Dampfsper Trittschalle Wärmedä Stahlbetor Kleber min Wärmedä Grundputz Deckputz DD01 Bodenbele Zementes Dampfsper Trittschalle Wärmedä Stahlbetor Kleber min Wärmedä Grundputz	ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS z (Silikonharzputz) Fussboden zur TG-Rampe ag strich erre (zB: Vap 2000 o. glw.) dämmung (zB: Isover TDPT o. glw.) mmung EPS n neralisch mmung EPS n neralisch mmung EPS	# F # Rse+Rsi = 0,34 von Innen nach / # F	Dicke gesamt	0,0100 0,0700 0,0700 0,0300 0,1400 0,2500 0,0600 0,0070 0,0030 Dicke 0,0100 0,0700 0,0002 0,0300 0,2500 0,0500 0,1400 0,0070 0,0030	0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038 0,470 0,700 U-Wert λ 0,150 1,580 0,350 0,033 0,038 2,300 1,000 0,038	0,067 0,044 0,001 0,909 3,684 0,109 0,005 1,579 0,015 0,004 0,15 d / λ 0,067 0,044 0,001 0,909 1,842 0,109 0,005 3,684

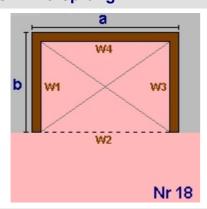
Bauteile

BVH Sonnengarten, Höchst - Haus A


DD02 Fussboden gegen Aussen				
	von Innen nach Au	ußen Dicke	λ	d/λ
Bodenbelag	#	0,0100	0,150	0,067
Zementestrich	F	0,0700	1,580	0,044
Dampfsperre (zB: Vap 2000 o. glw.)	#	0,0002	0,350	0,001
Trittschalldämmung (zB: Isover TDPT o. glw.)		0,0300	0,033	0,909
Wärmedämmung EPS		0,0700	0,038	1,842
Stahlbeton		0,2500	2,300	0,109
Kleber mineralisch		0,0050	1,000	0,005
RÖFIX EPS-F 031 EPS-Fassadendämmplatte "Lambda	por"	0,1200	0,031	3,871
Grundputz		0,0070	0,470	0,015
Deckputz (Silikonharzputz)		0,0030	0,700	0,004
	Rse+Rsi = 0,21	Dicke gesamt 0,5652	U-Wert	0,14
FD01 Flachdach allgemein				
	von Außen nach li	nnen Dicke	λ	d/λ
Rundkies 16/32	# *	0,0600	0,700	0,086
Polymerbitumen-Dichtungsbahn (2-lagig)	#	0,0150	0,230	0,065
Wärmedämmung EPS-W-25 (im Mittel)		0,2600	0,036	7,222
Dampfsperre (Alubitumen)	#	0,0080	221,00	0,000
Stahlbeton		0,2500	2,300	0,109
Spachtelputz		0,0050	0,830	0,006
	Daa Dai = 0.44	Dicke 0,5380	11.18/	0.42
	Rse+Rsi = 0,14	Dicke gesamt 0,5980	U-Wert	0,13
ZD01 Warme Zwischendecke		n Dist	^	1.7.2
	von Innen nach Au		λ	d/λ
Bodenbelag	_ #	0,0100	0,150	0,067
Zementestrich	F	0,0700	1,580	0,044
Trennfolie	#	0,0002	0,350	0,001
Trittschalldämmung (zB: Isover TDPT o. glw.)		0,0300	0,033	0,909
Wärmedämmung EPS		0,0700	0,038	1,842
Stahlbeton		0,2500	2,300	0,109
Spachtelputz	D . D 0.00	0,0050	0,830	0,006
	Rse+Rsi = 0,26	Dicke gesamt 0,4352	U-Wert	0,31

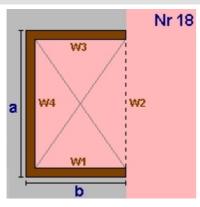
Dicke ... wärmetechnisch relevante Dicke
Einheiten: Dicke [m], Achsabstand [m], Breite [m], U-Wert [W/m²K], Dichte [kg/m³], λ [W/mK]
*... Schicht zählt nicht zum U-Wert #... Schicht zählt nicht zur Ol3-Berechnung
RTu ... unterer Grenzwert RTo ... oberer Grenzwert laut ÖNORM EN ISO 6946

Geometrieausdruck


BVH Sonnengarten, Höchst - Haus A

EG Grundform


```
a = 11,79 b = 9,86 lichte Raumhöhe = 2,45 + obere Decke: 0,44 => 2,89m
            116,25m<sup>2</sup> BRI
                                  335,40m<sup>3</sup>
Wand W1
             34,02m<sup>2</sup> AW01 Aussenwand allgemein
             28,45m<sup>2</sup> AW01
34,02m<sup>2</sup> AW02 Aussenwand zum Carport
Wand W2
Wand W3
             28,45m<sup>2</sup> AW01 Aussenwand allgemein
Wand W4
            116,25 \,\mathrm{m^2} ZD01 Warme Zwischendecke
Decke
Boden
            108,10m2 ID01 Fussboden zur Tiefgarage
              8,15m<sup>2</sup> KD01
Teilung
```

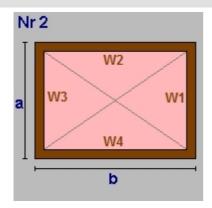

EG Vorsprung 1


```
a = 5,61 b = 2,80
lichte Raumhöhe = 2,45 + obere Decke: 0,44 => 2,89m
BGF 15,71m² BRI 45,32m³

Wand W1 8,08m² AW02 Aussenwand zum Carport
Wand W2 -16,19m² AW01 Aussenwand allgemein
Wand W3 8,08m² AW01
Wand W4 16,19m² AW01
Decke 15,71m² ZD01 Warme Zwischendecke
Boden 15,71m² KD01 Fussboden zum Keller
```

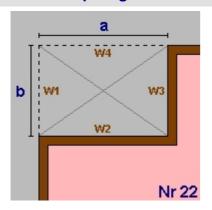
EG Vorsprung 2


```
a = 3,44 b = 5,00 lichte Raumhöhe = 2,45 + obere Decke: 0,44 => 2,89m
            17,20m² BRI
                               49,63m³
BGF
Wand W1
            14,43m<sup>2</sup> AW02 Aussenwand zum Carport
           -9,93m<sup>2</sup> AW02
Wand W2
Wand W3
            14,43m<sup>2</sup> AW01 Aussenwand allgemein
Wand W4
            9,93m<sup>2</sup> AW01
Decke
            17,20m² ZD01 Warme Zwischendecke
            17,20m² KD01 Fussboden zum Keller
Boden
```


EG Summe

EG Bruttogrundfläche [m²]: 149,16 EG Bruttorauminhalt [m³]: 430,35

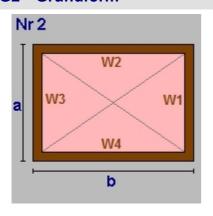
Geometrieausdruck


BVH Sonnengarten, Höchst - Haus A

OG1 Grundform


```
Von OG1 bis OG2
a = 20,32 b = 14,86 lichte Raumhöhe = 2,45 + obere Decke: 0,44 => 2,89m
           301,96m² BRI
                               871,20m³
            58,63m<sup>2</sup> AW01 Aussenwand allgemein
Wand W1
            42,87m<sup>2</sup> AW01
Wand W2
            58,63m<sup>2</sup> AW01
Wand W3
            42,87m<sup>2</sup> AW01
Wand W4
Decke
           301,96m<sup>2</sup> ZD01 Warme Zwischendecke
          -149,16m<sup>2</sup> ZD01 Warme Zwischendecke
Boden
Teilung 63,60m<sup>2</sup> DD01
           89,20m² DD02
Teilung
```

OG1 Rücksprung 1

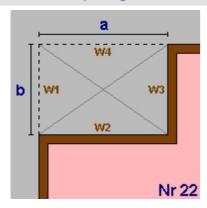



```
Von OG1 bis OG2
a = 2,55 b = 5,74 lichte Raumhöhe = 2,45 + obere Decke: 0,44 => 2,89m
          -14,64m² BRI
                             -42,23m^3
BGF
Wand W1 -16,56m<sup>2</sup> AW01 Aussenwand allgemein
Wand W2
           7,36m² AW01
           16,56m<sup>2</sup> AW01
Wand W3
Wand W4
           -7,36m<sup>2</sup> AW01
Decke
           -14,64m² ZD01 Warme Zwischendecke
          -10,92m<sup>2</sup> DD01 Fussboden zur TG-Rampe
Boden
Teilung -3,72m^2 DD02
```

OG1 Summe

OG1 Bruttogrundfläche [m²]: 287,32 OG1 Bruttorauminhalt [m³]: 828,97

OG2 Grundform




```
Von OG1 bis OG2
a = 20.32
                  b = 14,86
lichte Raumhöhe = 2,45 + \text{obere Decke: } 0,54 \Rightarrow 2,99m
            301,96m<sup>2</sup> BRI
                                 902,24m³
Wand W1
             60,72m<sup>2</sup> AW01 Aussenwand allgemein
             44,40m² AW01
Wand W2
             60,72m<sup>2</sup> AW01
Wand W3
             44,40m² AW01
Wand W4
          301,96m<sup>2</sup> FD01 Flachdach allgemein -301,96m<sup>2</sup> ZD01 Warme Zwischendecke
Decke
Boden
```

Geometrieausdruck

BVH Sonnengarten, Höchst - Haus A

OG2 Rücksprung 1

OG2 Summe

OG2 Bruttogrundfläche [m²]: 287,32 OG2 Bruttorauminhalt [m³]: 858,51

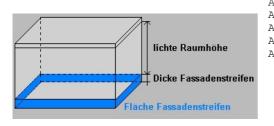
Deckenvolumen KD01

Fläche 41,06 m^2 x Dicke 0,50 $m = 20,54 m^3$

Deckenvolumen DD01

Fläche 52,68 m^2 x Dicke 0,59 $m = 30,83 m^3$

Deckenvolumen ID01


Fläche 108,10 m^2 x Dicke 0,58 $m = 62,18 m^3$

Deckenvolumen DD02

Fläche 85,48 m^2 x Dicke 0,57 $m = 48,31 m^3$

Bruttorauminhalt [m³]: 161,86

Fassadenstreifen - Automatische Ermittlung

Wand		Boden	Dicke	Länge	Fläche
AW01	_	KD01	0,500m	11,24m	5,62m²
AW01	_	DD01	0,585m	0,00m	0,00m²
AW01	_	ID01	0,575m	31,51m	18,12m²
AW02	_	KD01	0,500m	4,36m	2,18m²
AW02	_	ID01	0,575m	11,79m	6,78m²

Geometrieausdruck BVH Sonnengarten, Höchst - Haus A

Gesamtsumme Bruttogeschoßfläche [m²]: 723,79 Gesamtsumme Bruttorauminhalt [m³]: 2.279,69

Fenster und Türen BVH Sonnengarten, Höchst - Haus A

Тур		Bauteil	Anz	. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs
				normmaß Typ 1 (T1)	1,23	1,48	1,82	0,60	1,25	0,040	1,12	0,94		0,51	
			Prüt	normmaß Typ 2 (T2)	1,23	1,48	1,82	1,60	1,60	0,040	1,14	1,69		0,58	
											2,26				
horiz.	1														
T2	OG2	FD01		1,40 x 1,40 LK	1,40	1,40	1,96	1,60	1,60	0,040	1,25	1,69	3,32	0,58	0,75
			1				1,96				1,25		3,32		
N															
T1	EG	AW01	1	2,68 x 2,45 *	2,68	2,45	6,57	0,60	1,25	0,040	5,16	0,79	5,22	0,51	0,75
T1	EG	AW01	2	0,72 x 2,45 *	0,72	2,45	3,53	0,60	1,25	0,040	1,89	1,02	3,60	0,51	0,75
	EG	AW01	1	Eingangstüre	1,20	2,45	2,94					1,10	3,23		
T1	OG1	AW01	2	1,00 x 2,45	1,00	2,45	4,90	0,60	1,25	0,040	2,90	0,98	4,80	0,51	0,75
T1	OG1	AW01	1	0,60 x 2,45	0,60	2,45	1,47	0,60	1,25	0,040	0,69	1,08	1,59	0,51	0,75
T1	OG2	AW01	2	1,00 x 2,45	1,00	2,45	4,90	0,60	1,25	0,040	2,90	0,98	4,80	0,51	0,75
T1	OG2	AW01	1	0,60 x 2,45	0,60	2,45	1,47	0,60	1,25	0,040	0,69	1,08	1,59	0,51	0,75
			10				25,78				14,23		24,83		
0															
T1	EG	AW01	3	1,00 x 2,45	1,00	2,45	7,35	0,60	1,25	0,040	4,34	0,98	7,19	0,51	0,75
T1	OG1	AW01	4	1,00 x 2,45	1,00	2,45	9,80	0,60	1,25	0,040	5,79	0,98	9,59	0,51	0,75
T1	OG2	AW01	4	1,00 x 2,45	1,00	2,45	9,80	0,60	1,25	0,040	5,79	0,98	9,59	0,51	0,75
			11				26,95				15,92		26,37		
S															
T1	EG	AW01	1	5,10 x 2,45	5,10	2,45	12,50	0,60	1,25	0,040	9,76	0,81	10,15	0,51	0,75
T1	EG	AW01	1	2,70 x 2,45	2,70	2,45	6,62	0,60	1,25	0,040	4,90	0,85	5,61	0,51	0,75
T1	OG1	AW01	2	5,75 x 2,45	5,75	2,45	28,18	0,60	1,25	0,040	22,31	0,80	22,58	0,51	0,75
T1	OG2	AW01	2	5,75 x 2,45	5,75	2,45	28,18	0,60	1,25	0,040	22,31	0,80	22,58	0,51	0,75
			6				75,48				59,28		60,92		
W															
T1	EG	AW01	1	2,75 x 2,45 *	2,75	2,45	6,74	0,60	1,25	0,040	5,31	0,79	5,34	0,51	0,75
T1	OG1	AW01	3	1,00 x 2,45	1,00	2,45	7,35	0,60	1,25	0,040	4,34	0,98	7,19	0,51	0,75
T1	OG1	AW01	1	4,15 x 2,45	4,15	2,45	10,17	0,60	1,25	0,040	7,72	0,84	8,50	0,51	0,75
T1	OG1	AW01	1	1,00 x 2,45 *	1,00	2,45	2,45	0,60	1,25	0,040	1,45	0,98	2,40	0,51	0,75
T1	OG2	AW01	3	1,00 x 2,45	1,00	2,45	7,35	0,60	1,25	0,040	4,34	0,98	7,19	0,51	0,75
T1	OG2	AW01	1	4,15 x 2,45	4,15	2,45	10,17	0,60	1,25	0,040	7,72	0,84	8,50	0,51	0,75
T1	OG2	AW01	1	2,50 x 2,45 *	2,50	2,45	6,13	0,60	1,25	0,040	4,47	0,86	5,26	0,51	0,75
	1		11		1		50,36				35,35		44,38		
Summe			39				180,53			,	126,03		159,82		

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor Typ... Prüfnormmaßtyp

Rahmen **BVH Sonnengarten, Höchst - Haus A**

Bezeichnung	Rb.re.	Rb.li. m	Rb.o. m	Rb.u. m	%	Stulp Anz.	. Pfost Anz.	Pfb. m	H-Sp. Anz.	V-Sp. Anz.	Spb. m	
Typ 1 (T1)	0,140	0,140	0,150	0,150	38							Holz-Rahmen Fichte <= 74 Stockrahmentiefe <91
Typ 2 (T2)	0,140	0,140	0,140	0,140	37							Kunststoff-Rahmen <=40 Stockrahmentiefe < 71
2,68 x 2,45 *	0,140	0,140	0,150	0,150	21							Holz-Rahmen Fichte <= 74 Stockrahmentiefe <91
0,72 x 2,45 *	0,140	0,140	0,150	0,150	46							Holz-Rahmen Fichte <= 74 Stockrahmentiefe <91
1,00 x 2,45	0,140	0,140	0,150	0,150	41				1		0,140	Holz-Rahmen Fichte <= 74 Stockrahmentiefe <91
5,10 x 2,45	0,140	0,140	0,150	0,150	22		2	0,140				Holz-Rahmen Fichte <= 74 Stockrahmentiefe <91
2,70 x 2,45	0,140	0,140	0,150	0,150	26		1	0,140				Holz-Rahmen Fichte <= 74
2,75 x 2,45 *	0,140	0,140	0,150	0,150	21							Stockrahmentiefe <91 Holz-Rahmen Fichte <= 74 Stockrahmentiefe <91
0,60 x 2,45	0,140	0,140	0,150	0,150	53							Holz-Rahmen Fichte <= 74 Stockrahmentiefe <91
5,75 x 2,45	0,140	0,140	0,150	0,150	21		2	0,140				Holz-Rahmen Fichte <= 74 Stockrahmentiefe <91
4,15 x 2,45	0,140	0,140	0,150	0,150	24		2	0,140				Holz-Rahmen Fichte <= 74 Stockrahmentiefe <91
1,00 x 2,45 *	0,140	0,140	0,150	0,150	41				1		0,140	· ·
1,40 x 1,40 LK	0,140	0,140	0,140	0,140	36							Kunststoff-Rahmen <=40
2,50 x 2,45 *	0,140	0,140	0,150	0,150	27		1	0,140				Stockrahmentiefe < 71 Holz-Rahmen Fichte <= 74 Stockrahmentiefe <91

Rb.li,re,o,u Rahmenbreite links,rechts,oben, unten [m]
Stb. Stulpbreite [m] H-Sp. Anz Anzahl der horizontalen Sprossen
Pfb. Pfostenbreite [m] V-Sp. Anz Anzahl der vertikalen Sprossen
Typ Prüfnormmaßtyp

% Rahmenanteil des gesamten Fensters Spb. Sprossenbreite [m]

Heizwärmebedarf Standortklima BVH Sonnengarten, Höchst - Haus A

Heizwärmebedarf Standortklima (Höchst)

BGF 723,79 m² L_T 357,21 W/K Innentemperatur 20 °C tau 81,13 h BRI 2.279,69 m³ L_V 204,75 W/K a 6,071

Gesamt	365	198			35.246	20.202	13.504	18.874		22.619
Dezember	31	31	0,08	0,999	5.293	3.034	1.614	1.109	1,000	5.604
November	30	30	3,86	0,995	4.152	2.380	1.556	1.428	1,000	3.548
Oktober	31	24	9,29	0,914	2.845	1.631	1.476	2.049	0,779	740
September	30	0	14,23	0,509	1.483	850	796	1.517	0,000	0
August	31	0	17,36	0,219	701	402	354	749	0,000	0
Juli	31	0	18,10	0,155	506	290	251	545	0,000	0
Juni	30	0	16,03	0,336	1.021	585	525	1.081	0,000	0
Mai	31	0	12,94	0,581	1.877	1.076	938	1.965	0,000	0
April	30	23	8,50	0,867	2.958	1.696	1.356	2.598	0,760	532
März	31	31	4,29	0,973	4.176	2.394	1.572	2.584	1,000	2.414
Februar	28	28	0,69	0,995	4.636	2.657	1.452	1.888	1,000	3.953
Jänner	31	31	-1,06	0,999	5.596	3.208	1.614	1.362	1,000	5.828
Monat	Tage	Heiz- tage	Mittlere Außen- tempertur °C	Ausnut- zungsgrad	Transmissions- wärme- verluste kWh	Lüftungs- wärme- verluste kWh	nutzbare Innere Gewinne kWh	nutzbare Solare Gewinne kWh	Verhältnis Heiztage zu Tage	Wärme- bedarf *) kWh
N44	т	11-:-	N 4:441	A	T	1.06			\	\A/#

 $HWB_{SK} = 31,25 \text{ kWh/m}^2\text{a}$

^{*)} Wärmebedarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Referenz-Heizwärmebedarf Standortklima BVH Sonnengarten, Höchst - Haus A

Referenz-Heizwärmebedarf Standortklima (Höchst)

BGF 723,79 m² L_T 357,21 W/K Innentemperatur 20 °C tau 81,13 h BRI 2.279,69 m³ L_V 204,75 W/K a 6,071

Gesamt	365	198			35.246	20.202	13.504	18.874		22.619
Dezember	31	31	0,08	0,999	5.293	3.034	1.614	1.109	1,000	5.604
November	30	30	3,86	0,995	4.152	2.380	1.556	1.428	1,000	3.548
Oktober	31	24	9,29	0,914	2.845	1.631	1.476	2.049	0,779	740
September	30	0	14,23	0,509	1.483	850	796	1.517	0,000	0
August	31	0	17,36	0,219	701	402	354	749	0,000	0
Juli	31	0	18,10	0,155	506	290	251	545	0,000	0
Juni	30	0	16,03	0,336	1.021	585	525	1.081	0,000	0
Mai	31	0	12,94	0,581	1.877	1.076	938	1.965	0,000	0
April	30	23	8,50	0,867	2.958	1.696	1.356	2.598	0,760	532
März	31	31	4,29	0,973	4.176	2.394	1.572	2.584	1,000	2.414
Februar	28	28	0,69	0,995	4.636	2.657	1.452	1.888	1,000	3.953
Jänner	31	31	-1,06	0,999	5.596	3.208	1.614	1.362	1,000	5.828
Monat	Tage	Heiz- tage	Mittlere Außen- tempertur °C	Ausnut- zungsgrad	Transmissions- wärme- verluste kWh	Lüftungs- wärme- verluste kWh	nutzbare Innere Gewinne kWh	nutzbare Solare Gewinne kWh	Verhältnis Heiztage zu Tage	Wärme- bedarf *) kWh
N44	т	11-:-	N 4:441	A	T	1.06			\	\A/#

HWB $_{Ref,SK}$ = 31,25 kWh/m²a

^{*)} Wärmebedarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Heizwärmebedarf Referenzklima BVH Sonnengarten, Höchst - Haus A

Heizwärmebedarf Referenzklima

BGF 723,79 m² L_T 355,45 W/K Innentemperatur 20 °C tau 81,39 h BRI 2.279,69 m³ L_V 204,75 W/K a 6,087

Gesamt	365	190			33.105	19.069	12.625	16.751		22.337
Dezember	31	31	0,19	0,999	5.239	3.018	1.615	997	1,000	5.645
November	30	30	4,16	0,996	4.054	2.335	1.557	1.259	1,000	3.573
Oktober	31	22	9,64	0,901	2.740	1.578	1.456	2.032	0,701	581
September	30	0	15,03	0,447	1.272	733	698	1.298	0,000	0
August	31	0	18,56	0,119	381	219	192	408	0,000	0
Juli	31	0	19,12	0,070	233	134	113	253	0,000	0
Juni	30	0	17,33	0,215	683	394	336	740	0,000	0
Mai	31	0	14,20	0,460	1.534	884	743	1.662	0,000	0
April	30	17	9,62	0,820	2.656	1.530	1.282	2.455	0,571	257
März	31	31	4,81	0,969	4.017	2.314	1.565	2.563	1,000	2.203
Februar	28	28	0,73	0,995	4.603	2.651	1.452	1.876	1,000	3.926
Jänner	31	31	-1,53	0,999	5.694	3.280	1.615	1.207	1,000	6.152
		tage	tempertur	zungsgrau	verluste kWh	verluste kWh	Gewinne kWh	Gewinne kWh	zu Tage	kWh
Monat	Tage	Heiz- tage	Mittlere Außen-	Ausnut- zungsgrad	Transmissions- wärme-	Lüftungs- wärme-	nutzbare Innere	nutzbare Solare	Verhältnis Heiztage	Wärme- bedarf *)

 $HWB_{RK} = 30,86 \text{ kWh/m}^2\text{a}$

^{*)} Wärmebedarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Referenz-Heizwärmebedarf Referenzklima BVH Sonnengarten, Höchst - Haus A

Referenz-Heizwärmebedarf Referenzklima

BGF 723,79 m² L_T 355,45 W/K Innentemperatur 20 °C tau 81,39 h BRI 2.279,69 m³ L_V 204,75 W/K a 6,087

Gesamt	365	190			33.105	19.069	12.625	16.751		22.337
Dezember	31	31	0,19	0,999	5.239	3.018	1.615	997	1,000	5.645
November	30	30	4,16	0,996	4.054	2.335	1.557	1.259	1,000	3.573
Oktober	31	22	9,64	0,901	2.740	1.578	1.456	2.032	0,701	581
September	30	0	15,03	0,447	1.272	733	698	1.298	0,000	0
August	31	0	18,56	0,119	381	219	192	408	0,000	0
Juli	31	0	19,12	0,070	233	134	113	253	0,000	0
Juni	30	0	17,33	0,215	683	394	336	740	0,000	0
Mai	31	0	14,20	0,460	1.534	884	743	1.662	0,000	0
April	30	17	9,62	0,820	2.656	1.530	1.282	2.455	0,571	257
März	31	31	4,81	0,969	4.017	2.314	1.565	2.563	1,000	2.203
Februar	28	28	0,73	0,995	4.603	2.651	1.452	1.876	1,000	3.926
Jänner	31	31	-1,53	0,999	5.694	3.280	1.615	1.207	1,000	6.152
Monat	Tage	Heiz- tage	Außen- tempertur °C	Ausnut- zungsgrad	Transmissions- wärme- verluste kWh	Lüftungs- wärme- verluste kWh	Innere Gewinne kWh	Solare Gewinne kWh	Heiztage zu Tage	bedarf *)
Monat	Togs	∐oi=	Mittlere	Augnut	Transmissisms	Löftungs	nutzbare	nutzbare	Verhältnis	Wärme-

HWB _{Ref,RK} = 30,86 kWh/m²a

^{*)} Wärmebedarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

RH-Eingabe

BVH Sonnengarten, Höchst - Haus A

Raumheizung

Allgemeine Daten

Wärmebereitstellung gebäudezentral

<u>Abgabe</u>

Haupt Wärmeabgabe Flächenheizung

Systemtemperatur 40°/30°

Regelfähigkeit Einzelraumregelung mit Thermostatventilen

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

<u>Verteilung</u>				Leitungslängen lt. Defaultwerten					
	gedämmt	Verhältnis	Dä	mmung	Leitungslänge	konditioniert			
		Dämmstoffdicke zu	Arn	naturen	[m]	[%]			
Mantallia !t	1.	Rohrdurchmesser		N. 1	05.00	0			
Verteilleitungen	Ja	2/3		Nein	35,29	0			
Steigleitungen	Ja	2/3		Nein	57,90	100			
Anbindeleitunge	n Ja	2/3		Nein	202,66				

Speicher

Art des Speichers für automatisch beschickte Heizungen

Standort nicht konditionierter Bereich

Baujahr ab 1994

Nennvolumen 635 I Defaultwert

Täglicher Bereitschaftsverlust Wärmespeicher q _{b.WS} = 3,80 kWh/d Defaultwert

Bereitstellung

Bereitstellungssystem monovalente Wärmepumpe

<u>Hilfsenergie - elektrische Leistung</u>

Umwälzpumpe192,91 WDefaultwertSpeicherladepumpe88,01 WDefaultwert

WWB-Eingabe

BVH Sonnengarten, Höchst - Haus A

Warmwasserbereitung

Allgemeine Daten

Wärmebereitstellung gebäudezentral

kombiniert mit Raumheizung

Abgabe

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Wärmeverteilung mit Zirkulation				Leitungslängen lt. Defaultwerten					
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Dämmung Armaturen	Leitungslänge [m]	konditioniert [%]				
Verteilleitungen	Ja	2/3	Nein	14,53	0				
Steigleitungen	Ja	2/3	Nein	28,95	100				
Stichleitungen				115,81	Material Kunststof	f 1 W/m			
Zirkulationsleitu	ng Rückla	uflänge		ı	konditioniert [%]				
Verteilleitung	Ja	2/3	Nein	13,53	0				
Steigleitung	Ja	2/3	Nein	28,95	100				

Speicher

Art des Speichers Wärmepumpenspeicher indirekt Standort nicht konditionierter Bereich

Baujahr Ab 1994

Nennvolumen 1.448 I Defaultwert

Täglicher Bereitschaftsverlust Wärmespeicher q _{b,WS} = 4,08 kWh/d Defaultwert

Bereitstellung

Bereitstellungssystem monovalente Wärmepumpe

Hilfsenergie - elektrische Leistung

Zirkulationspumpe 33,37 W Defaultwert **Speicherladepumpe** 88,01 W Defaultwert

WP-Eingabe

BVH Sonnengarten, Höchst - Haus A

		Wärmepu	umpe				
Wärmepumpenart	Außenluft /	Außenluft / Wasser					
Betriebsart	Monovalen	Monovalenter Betrieb					
Anlagentyp	Warmwass	Warmwasser und Raumheizung					
Nennwärmeleistung	25,39 kW	Defaultwert					
Jahresarbeitszahl	3,0	berechnet It. ÖNORM H5056					
COP	4,6	freie Eingabe	Prüfpunkt: A7/W35				
Betriebsweise	gleitender Betrieb						
Modulierung	modulieren	der Betrieb					

Photovoltaiksystem Eingabe BVH Sonnengarten, Höchst - Haus A

Photovoltaik

Kollektoreigenschaften

Art des PV-Moduls Multikristallines Silicium

Bezeichnung ---

Peakleistung 5,80 kWp ✓ freie Eingabe

Kollektorverdrehung0 GradNeigungswinkel10 Grad

Systemeigenschaften und Verschattung

Art der Gebäudeintegration Mäßig belüftete Module

Mittlerer Systemwirkungsgrad 0,75

Geländewinkel 0 Grad

Erzeugter Strom

4.957 kWh/a

Peakleistung 5,8 kWp

Netto-Photovoltaikertrag Referenzklima: 5.042 kWh/a Berechnet It. ÖNORM H 5056:2014

Vermeidung sommerlicher Überwärmung Nachweis gemäß ÖNORM B 8110-3 Ausgabe 2012-03-15

BVH Sonnengarten, Höchst - Haus A

Sonnengarten 6973 Höchst

Firma Sonnengarten Immobilien GmbH

Top A06, Wohn-, Esszimmer

Vermeidung sommerlicher Überwärmung

Nachweis gemäß ÖNORM B 8110-3 Ausgabe 2012-03-15

GEBÄUDEDATEN

Katastralgemeinde Höchst

Einlagezahl

Grundstücksnummer 4215/130

Baujahr 2021

Nutzungsprofil Mehrfamilienhaus

Planungsstand Neubauplanung

KLIMADATEN

Normsommer- 21,8 °C Tagesmittel

außentemperatur 14,5 °C min. Nacht

28,4 °C max. Tag

Seehöhe 403m

	Fläche	immissionsflächenbezogene speicherwirksame Masse	min.	Anforderung	
	m²	kg/m²	kg/m²		
Top A06, Wohn-, Esszimmer	26,93	15.818,14	2.000,00	erfüllt	

Voraussetzungen: Einhaltung der Sicherheitserfordernisse gegen Sturm, Schlagregen, Einbruch u. dgl.

Einhaltung der Anforderungen an den Schallschutz It. ÖNORM B 8115-2

Es sind keine wie immer gearteten Strömungsbehinderungen wie beispielsweise

Insektenschutzgitter oder Vorhänge vorhanden.

Sämtliche Fenster der als kritisch eingestuften Räume können nachts offen gehalten werden.

ErstellerIn WSS Thomas Schwarz

Alte Landstrasse 39

6820 Frastanz

Unterschrift

Normsommeraußentemperatur Die Normsommeraußentemperatur ist der 24 Stunden Mittelwert (Tagesmittelwert)

der an 130 Tagen innerhalb von 10 Jahren überschritten wird.

Die Berechnung entspricht der ÖNORM B 8110-3 Ausgabe: 2012-03-15

Wärmeschutz im Hochbau Teil 3: Vermeidung sommerlicher Überwärmung

Vereinfachter Nachweis

Vermeidung sommerlicher Überwärmung BVH Sonnengarten, Höchst - Haus A

Raum Top A06, Wohn-, Esszimmer

Nutzfläche 26,93 m² Nettovolumen 65,98 m³

Fensterlüftung

Luftwechselzahl 2,50 / h

✓ Einrichtung berücksichtigt

Luftvolumenstrom 176,38 m³/hm²

gesamte speicherwirksame Masse 14.793 kg

Fensterfläche (Architekturlichte) 16,54 m²

Immisionsfläche 0,94 m²

immissionsflächenbezogene

speicherwirksame Masse 15.818 kg/m²

Bauteilgewicht	Aus- richtung	Fläche m²	flächenbezogene speicherwirksame Masse kg/m²	speicherwirksame Masse kg
AW01 Aussenwand allgemein	0	6,96	277,27	1.929
AW01 Aussenwand allgemein	S	2,57	277,27	713
ZW01 Innenwände allgemein		26,07	22,02	574
ZD01 Warme Zwischendecke		26,93	119,40	3.215
FD01 Flachdach allgemein		26,93	272,46	7.337
Einrichtung		26,93	38,00	1.023

Fenster	Anzahl	Aus- richtung	Fläche m²	Neigung	Anzahl Scheiben	Ug	g- l Wert	Uw
1,00 x 2,45	1	0	2,45	90°	3	0,60	0,51 0,	,98
5,75 x 2,45	1	S	14,09	90°	3	0,60	0,51 0,	,80

Verschattung	Ausricht.	Sonnenschutz	von - bis	τ_{eB}	ρ_{eB}	F _C	F _{SC}
1,00 x 2,45	0	Außenjalousie, hell	8:00 - 19:00	0,05	0,50	0,15	0,968
5,75 x 2,45	S	Außenjalousie, hell	8:00 - 19:00	0,05	0,50	0,15	0,954

 $\label{eq:local_local$

 τ_{eB} solarer Transmissionsgrad ρ_{eB} solarer Reflexionsgrad

F_C Abminderungsfaktor des beweglichen Sonnenschutzes in Kombination mit der Verglasung (wurde früher mit z bezeichnet)

 $\mathsf{F}_{\mathsf{SC}}\quad \mathsf{Verschattungsfaktor}\ \mathsf{für}\ \mathsf{Umgebung},\ \mathsf{auskragende}\ \mathsf{Bauteile},\ \ \mathsf{Fensterlaibung}\ \mathsf{lt}.\ \mathsf{\ddot{O}NORM}\ \mathsf{B}\ \mathsf{8110-6}$

Speicherwirksame Masse BVH Sonnengarten, Höchst - Haus A

AW01 Aussenwand allgemein		Dicke	λ		spez. Wk.
	von Innen nach Außen	m	W/mk	kg/m³	J/kgK
Spachtelputz		0,0050	0,830	1.600	1.000
Stahlbeton		0,2000	2,300	2.325	1.000
Kleber mineralisch		0,0050	1,000	1.800	0
RÖFIX EPS-F 031 EPS-Fassadendämmplatte "Lambdapo	r"	0,1800	0,031	15	1.500
Kleber mineralisch		0,0050	1,000	1.800	0
Klinkerriemchenfassade (geklebt)		0,0200	0,870	2.100	1.000
U-Wert 0,16 W/m²K	Speicherwirks	same Mas	sse [kg/m²]	m _{w,B,A}	277,27
FD01 Flachdach allgemein		Dicke	λ	Dichte	spez. Wk.
	von Außen nach Innen	m	W/mk	kg/m³	J/kgK
Rundkies 16/32	# *	0,0600	0,700	1.800	1.000
Polymerbitumen-Dichtungsbahn (2-lagig)	#	0,0150	0,230	1.100	1.260
Wärmedämmung EPS-W-25 (im Mittel)		0,2600	0,036	23	1.400
Dampfsperre (Alubitumen)	#	0,0080	221,00	2.800	900
Stahlbeton		0,2500	2,300	2.325	1.116
Spachtelputz		0,0050	0,830	1.600	1.000
U-Wert 0,13 W/m²K	Speicherwirks	same Mas	sse [kg/m²]	m _{w,B,A}	272,46
ZD01 Warme Zwischendecke		Dicke	λ	Dichte	spez. Wk.
	von Innen nach Außen	m	W/mk	kg/m³	J/kgK
Bodenbelag	#	0,0100	0,150	740	2.340
Zementestrich		0,0700	1,580	2.200	1.000
Trennfolie	#	0,0002	0,350	930	1.680
Trittschalldämmung (zB: Isover TDPT o. glw.)		0,0300	0,033	105	900
Wärmedämmung EPS		0,0700	0,038	23	1.450
Stahlbeton		0,2500	2,300	2.325	1.000
Spachtelputz		0,0050	0,830	1.600	1.000
U-Wert 0,31 W/m²K	Speicherwirks	same Mas	sse [kg/m²]	m _{w,B,A}	119,40
ZW01 Innenwände allgemein		Dicke	λ	Dichte	spez. Wk.
•	von Innen nach Außen	m	W/mk	kg/m³	J/kgK
Gipskartonplatte		0,0125	0,250	900	1.000
Gipskartonplatte		0,0125	0,250	900	1.000
Glaswolle / Metallunterkonstruktion		0,0750	0,038	18	900
Gipskartonplatte		0,0125	0,250	900	1.000
Gipskartonplatte		0,0125	0,250	900	1.000
					00.00
U-Wert 0,41 W/m²K	Speicherwirks	same Mas	sse [kg/m²]	$m_{w,B,A}$	22,02